
USC Information Sciences Institute • 4676 Admiralty Way • Marina del Rey, CA 90202 

 

 

 

 

 

Building Apparatus for 
Multi-resolution Networking Experiments 

Using Containers 
 

Authors: DETER Team 

 

 

 

 

 

 

 

 

This material is based upon work supported by the Department of Homeland Security, and Space and 
Naval Warfare Systems Center, San Diego, under Contract No. N66001-10-C-2018. 

Any opinions, findings, and conclusions or reccommendations expressed in this material are those of the 
author(s) and do not necessarily reflect the views of the Deparment of Homeland Security for the Space 
and Naval Warfare Systems Center, San Diego. 

DETER Technical Report 
ISI-TR-683 

2011 
 



Building Apparatus for Multi-resolution Networking Experiments Using

Containers

Abstract

We describe a system approach and key abstraction in-

tended to facilitate the modeling and emulation of highly

scaled, complex, multi-resolution networking problems

within the DETER testbed. Multi-resolution problems

are those that are best modeled within a testbed by repre-

senting different aspects of the overall scenario at differ-

ent scale and fidelity. The present work facilitates struc-

tured and efficient support of such problems within our

testbed, allowing each individual component of a sce-

nario to be modeled at precisely the required fidelity

while the whole scales efficiently to very large size. Our

key abstraction is the container. Different types of con-

tainers each contain experimental elements embedded at

different levels of abstraction, while providing a uniform

interface and self-description of characteristics. Contain-

ers can hold elements or other containers, and define the

communications scope of their contents. We describe the

concept, design and a prototype implementation, includ-

ing a demonstration that instantiates a scenario of more

than 650 elements on 8 computers.

1 Introduction

We propose a system to enable experimentation on

large, multi-resolution, networking problems. A multi-

resolution problem is best understood by representing its

different aspects at different fidelity. As the Internet gets

larger and more complex, network researchers have be-

gun to investigate multi-resolution phenomena. For ex-

ample, the spread pattern of a zero-day worm across the

whole Internet can affect the properties of a distributed

denial of service attack that the worm’s payload delivers.

The worm propagation is best understood using conta-

gion models that represent large parts of the network ab-

stractly. Evaluating the effect of the attack depends on

modeling a few interconnected systems in great detail.

Wide-area DNS cache poisoning is a another multi-

resolution problem. Cache poisoning opportunities arise

from user behavior, modeled coarsely, and success de-

pends on cache race conditions, modeled finely. Our sys-

tem encourages experimentation on such phenomena by

representing its components at appropriate levels of ab-

straction in an experimental apparatus. An apparatus is a

controlled setting containing the experimental tools and

monitoring systems necessary for carrying out repeatable

experiments.

Current network testbeds cannot directly represent the

multi-resolution phenomena that interest us, though they

are natural platforms in which to build an apparatus.

Testbeds [2, 14, 21] have made direct experimentation

on the order of a few hundred computers more acces-

sible and useful to network researchers. Some sys-

tems provide tools for virtualization[12, 13] or integrated

simulation[11] to scale experiments up or to import ab-

stractions, but they supply the researcher little guidance

in which to choose or how to apply them. A researcher

who wants to use those tools must largely depend on their

own knowledge and experience.

Our insight is to use the abstractions that arise

naturally from modeling and thinking about a multi-

resolution problem to guide the construction of an appa-

ratus where specific components maintain the fidelity the

experimenter requires and the whole scales efficiently.

If an experimenter needs a network that reports the

progress of a worm propagating based on a contagion

model at the granularity of network location, details of

how the worm infects each host can be omitted and a

larger network modeled.

This paper addresses the problem of converting the re-

searcher’s conceptual apparatus into a real apparatus that

is scaled and abstracted appropriately to the researcher’s

goals. The conceptual apparatus includes the general

topology annotated with fidelity requirements. From that

our system generates a real apparatus meeting those re-

quirements.

The fundamental building block of our system is the

1



container, which represents experimental elements at the

same level of abstraction; we build each apparatus from

containers. Each container collects similar resources and

can make those resources available as either concrete el-

ements or as part of nested containers that hold simpler

elements.

A container also provides a communications scope for

the elements inside it, allowing elements to communi-

cate across abstraction levels. Elements in the same con-

tainer can talk directly, and elements talking between

containers have their communications translated at the

well-defined container boundaries.

Containers characterize their abstraction level in a way

meaningful to the researcher, implement a useful range

of implementation models/abstraction levels, and present

a standard interface for combining elements across levels

of abstraction.

Because using containers highlights concrete scal-

ing/abstraction trade-offs, researchers are guided to con-

struct a useful, realizable apparatus. When using con-

tainers to realize an experiment the scaling properties

and effects on abstraction are explicit, meaning that re-

searchers need not be experts in scalable implementation

strategies to produce meaningful multi-resolution exper-

iments. As we understand the problem more, the tools

will do more of this analysis for the researcher.

The standard interfaces of containers accelerate inte-

gration of new scaling technologies. New techniques for

virtualization, simulation, and other scaling approaches

appear frequently; once containerized they express their

tradeoffs explicitly and can be configured directly.

The system combines containers into a practical en-

vironment using standard interfaces. Once a conceptual

apparatus is mapped into containers appropriate for the

experiment being conducted the apparatus must be real-

ized. That is, the containers need to be created, concrete

elements they contain need to be loaded with software,

and the elements must be interconnected. Providing a

minimal interface to containers that spans multiple ab-

straction levels is a key challenge.

We have designed the container interfaces and proto-

typed the tools needed to create experiments from them

in the DETER testbed. DETER is both an open Emulab-

based testbed and a research project investigating princi-

pled methods of network experimentation[14].

We tested our prototype by constructing an instantia-

tion of the worm/DDoS experiment outlined above that

consisted of more than 650 concrete elements instan-

tiated on 8 physical machines communicating between

three abstraction technologies.

The remainder of this paper describes our container

design and its relationship to other work, and then de-

scribes our prototype implementation.

Figure 1: A container holding two concrete elements

2 Containers

Containers form the backbone of our apparatus building

system. Each container represents a collection of simi-

lar resources that can be used to construct the apparatus.

A container is conceptually full of computers, processes

or some other implementation platform. We precede the

word “container” with the resource type, so we refer to

“computer containers” or “process containers.” The sys-

tem builds apparatuses from those resources by allocat-

ing and connecting them hierarchically through standard

container interfaces. Domain-specific tools assist can in

this process.

A researcher can dedicate a container’s resources di-

rectly to the apparatus or to supporting a nested con-

tainer. A computer container has interfaces to allocate

computers directly, or to use computers as virtual ma-

chine containers for lower fidelity types of elements,

such as virtual machines or processes. Similarly, a

builder could ask the same computer container to create

a container of Hadoop tasks out of multiple computers.

When resources are allocated to an apparatus directly

we call them concrete elements. Concrete elements in

the same container represent the same type of element.

In addition to allocating these elements, the researcher

specifies the interconnections between them and inter-

connection points that allow concrete elements to com-

municate outside the container. When communications

leave or enter the container, they are translated to or

from the container’s representations. Packet events from

a simulation are translated into packets on a wire by those

interconnection points. A container holding two concrete

elements is depicted in Figure 1.

2



A container also knows what kind of containers it can

hold. For one container to hold another, there are two re-

quirements. First, the inner container must be able to use

the outer container’s resources. A computer is not built

from virtual machines, so a computer container cannot

be created inside a virtual machine container. Second,

the inner container must be able to translate to and from

the outer container’s communication model.

Each container expresses its scalability and abstrac-

tion level. Because abstraction is multi-dimensional, the

metrics we use depend somewhat on the container tech-

nology. This scaling information includes constraints. A

simulation-thread container can advertise the ability to

create up to 1000 threads with packet rates of (90,000 -

500 x total threads) packets/second.

For specialized containers, picking the units of a scal-

ing expression is straightforward. A discrete event simu-

lation can support a given event rate or a traffic generator

a given packet rate. For researchers already expressing

their abstractions as event or packet rates, these descrip-

tions are meaningful; for researchers thinking in different

terms these abstractions are incompatible.

More general platforms, such as physical computers

or virtual machines are more difficult to characterize be-

cause their computational power or I/O bandwidth can

be used in many ways. However, we believe that such

adaptable concrete elements will be used primarily when

higher fidelity is needed. In that case, the real-world

characterization of the systems is the appropriate abstrac-

tion.

The container model captures a broad range of appara-

tus constructors, including Emulab-like computer-based

testbeds, simulation systems, and virtual machine mon-

itors. The nesting abilities captures the process of allo-

cating resources of one kind to act as the substrate for

another. Fixing each technology to a standard interface

allows our system to express complex apparatus configu-

rations and to add new technologies to the system as they

appear.

2.1 Topology Building

Once an apparatus is described in terms of containers,

the system must build it. Because the elements of the

apparatus are all in containers, the researcher constructs

the apparatus by asking a container to create it. In prac-

tice this request is made on a computer container, which

is a testbed like DETER that understands the container

interface.

We describe apparatus topologies using an extension

of the topology description language (topdl)[8] used by

DETER Federation[9]. Topdl is a declarative, extensi-

ble language that expresses the interconnections between

network elements. We annotate network elements with

Figure 2: Multiple containers and elements demonstrating the

use of a container container

the resource type that should be used to instantiate them.

We discuss how such a topology can be created in Sec-

tion 2.3.

When the researcher asks the outer container to create

the topology, the container splits the topology into ele-

ments it can directly realize and containers it supports.

It directly realizes and interconnects the concrete ele-

ments and creates containers to hold the others. The

container then requests the sub-topologies (and inter-

container connection points) from the inner containers.

If any container fails to allocate based on its capacity or

compatibility, the allocation fails.

Figure 2 depicts such a multi-container topology. The

two inner containers each have realized several concrete

elements. The process container holds several process

level objects and the QEMU[4] container holds virtual

machine instances. Communications within the contain-

ers are coordinated as in Figure 1. Communications be-

tween the containers are managed by the container con-

tainer that encloses them.

A container container can only hold other containers

and defines a communication scope for the inner con-

tainers. Communications within the container container

have a simple format that many containers can export.

When communications leave the container container it is

responsible for the translation. A container container is

used when several kinds of concrete elements are operat-

ing on the same physical resource.

2.2 Using the Apparatus

Once the concrete elements have been instantiated and

connected, they are manipulated by standard interfaces

to carry out the experiment. Although concrete elements

3



represent a wide range of implementation possibilities

the interface to manipulate them is simple, though some

of the parameters depend on the elements in use.

A concrete element can be started, stopped and loaded.

Loading an element puts it into its initial state, starting it

begins its operation, and stopping to stops its experimen-

tal functions. Some concrete elements can be stopped

and restarted, while others revert to their initial state on

restart.

Loading a concrete element has different effects and

takes different inputs for different elements. Loading a

simulation thread can be a matter of passing it a short

configuration; loading a computer can be a matter of in-

stalling an operating system and configuring an applica-

tion suite.

We mitigate these differences in two ways: by spec-

ifying standard container interfaces where possible and

leveraging the use of cross platform tools. Where varia-

tions on an implementation strategy are common we de-

fine or adopt unified standards. Rather than assuming

that researchers will be conversant with many forms of

virtual machine configurations, we adopt standards such

as libvirt[5]. Similar opportunities to use standard disk

image formats are available.

In addition to adopting widely applicable standards

and conventions within the container interface, we also

encourage the use of emerging cross-platform configu-

ration and experiment management tools. Stork[6] can

load software many instances and types of virtual ma-

chine efficiently. Plush[1] can configure and control

many physical and virtual machine instances. SEER is a

an experiment control platform that manages experiment

configuration and operation across many platforms[18].

All these tools currently configure and control a range

of virtual and physical devices, and all are designed for

extension to new environments.

Making use of both the evolving scalable experimen-

tation tools, and the careful extension of the containers

interfaces, we configure and operate large scale experi-

ments.

2.3 Embedding Topologies

As an apparatus progresses from the researcher’s concep-

tion to a collection of resources on which an experiment

can be carried out, there are two points where the con-

tainer model influences the conceptual to concrete map-

ping: when conceptual resources are assigned to contain-

ers and when containers realize concrete elements. The

system provides guidance at each point.

When elements are being assigned to containers, the

system guides the researcher in two ways. First the ab-

straction advertisements restrict the choice of containers

to those that match the researcher’s model. Second, the

scaling information guides both which container types

are candidates and how many instances of an element to

put in a container due to the scaling constraints. While

this constraint matching problem can be complex, we ex-

pect the fact that the largest number of elements will usu-

ally be at a coarse degree of abstraction, and therefore

loosely constrained, will keep it manageable.

The second problem is assigning the concrete ele-

ments to physical realizations. At some point the virtual

machines need to be instantiated, the simulators loaded,

and the computers allocated. This can involve the place-

ment of a large number of elements. We take advantage

of the hierarchical structure of the container layout to

guide an recursive embedding process.

As in the allocation of federated sub-experiments in

the DETER testbed[9], the container system breaks the

allocation problem into sub-problems, and passes those

sub-problems to domain-specific embedders. Unlike the

general problem of breaking a network topology into

components that the DETER federator faces, the con-

tainer layout problem is organized by the researcher’s

abstraction and the hierarchical organization of compo-

nents. This breaks the problem into largely indepen-

dent sub-problems amenable to individual embedders.

When multiple VMs are laid out on multiple comput-

ers, the scalability constraints have made each VM lay-

out tractable as well as limiting the inter-computer band-

width.

3 Related Work

We discuss three areas of work related to our system:

other experiment apparatus creation systems, systems

that offer abstractions of network elements that may be

the basis for future containers, and systems related to the

loading and management of concrete elements.

The most successful network experimentation plat-

forms are Emulab and PlanetLab[2, 21]. Both have

years of operational experience offering automatic cre-

ation of experimental apparatus. The two facilities have

different focuses; Emulab provides a set of tightly con-

trolled computers and configurable networks that can be

closely monitored and PlanetLab provides access to ser-

vices on virtualized computers throughout the Internet.

These lines blur in that PlanetLab can support dedicated

connections using the VINI system for allocating net-

work bandwidth[3] and Emulab can modify its network

emulation based on PlanetLab measurements using the

FlexLab system[16].

Of the two systems Emulab is more compatible

with our model of creating experimental apparatus

for controlled experimentation. Emulab provides both

virtualization[12] and integrated simulation[11] services

in an attempt to construct larger apparatuses. Unlike con-

4



tainers, which export a unified interface, each of these

systems is a separate extension to the Emulab model.

Each scaling system determines the appropriate scaling

parameters through feedback. A representative scenario

is repeated using different parameters to estimate the

proper scaling factors, e.g., the number of virtual ma-

chines per computer. The container system provides a

priori guidance.

We discuss a few scaling technologies for network ex-

perimentation that are ripe for containerization.

ModelNet[20] simulates network topologies inside a

few computers using virtual networking. It provides

many thousands of packets per second of emulated net-

work traffic through topologies and conditions specified

by a user. Only a few computers and a high capacity in-

terconnection are necessary. It is a powerful system ripe

for combination with others using the container model.

Emulab offers path emulation[17], which algorithmi-

cally extends the emulation of conditions on network

links to the emulation of conditions on paths. This fa-

cility is dynamically configured based on measured net-

work conditions in FlexLab[16]. Path emulation offers a

scalability advantage, and FlexLab offers arguably more

realistic configurations of the same scaling mechanism.

These are both attractive for containerization.

An emerging standard interface for configuring virtual

machine monitors (VMM), libvirt[5] is becoming more

prevalent. It simplifies the selection of a virtualization

technology and its configuration. However, libvirt does

not provide the abstraction and scaling descriptions that

containers do, nor does it address networking and nest-

ing as cleanly or completely as containers. Libvirt does

offer the opportunity to simply incorporate many under-

lying VMM technologies into the container system. As

our prototypes mature we expect to adopt libvirt where

possible.

Emulab configures and monitors at least two levels

of virtualization in its experimental apparatus, but re-

searchers will need to configure concrete elements at var-

ious levels of abstraction. The Plush[1] system provides

unified abstractions for configuring systems of heteroge-

neous computers. While it is not directly applicable for

configuring concrete elements from disparate containers,

we are likely to adopt similar abstractions.

On another axis, Stork[6] takes advantage of the phys-

ical collocation of multiple VMMs to efficiently config-

ure them. Though not all containers can take advan-

tage of the techniques Stork uses, we expect to use sim-

ilar approaches to make them efficient. Our prototype

makes some optimizations for configuration of virtual

machines.

4 Prototype Implementation and Demon-

stration

To test our ideas we prototyped key aspects of the system

and created several large-scale apparatuses. We wanted

to show that the model will support interesting forms of

virtualization, that the interconnection model is useful,

and that containers can be implemented efficiently.

4.1 Virtualization

Our prototype makes several abstractions available to re-

searchers: dedicated computer elements, virtual machine

instances, and networked processes. If we consider fi-

delity as how closely an element represents a general

purpose computer, the computer container makes whole

computers available as high fidelity, high cost elements.

Virtual machines are lower fidelity but lower cost. The

process elements are very low fidelity, very low cost ele-

ments.

The process container is an unusual abstraction. That

container puts each concrete element into a separate ad-

dress space bound to a unique networking stack. We use

the ViewOS[10] virtualization system to implement this

abstraction.

The computer container is implemented by calling out

to the DETER testbed interfaces, and the virtual machine

container uses the QEMU[4] virtualization system. We

can create virtual machine containers inside computer

containers and process containers inside either computer

containers or virtual machine containers. The implemen-

tation of these containers is straightforward, though we

do apply some optimizations described in Section 4.3.

The prototype can create a nested structure of all three

element abstractions (processes inside VMs inside com-

puters). Containers are easy to compose across multiple

layers of abstraction, which argues in favor of the gen-

erality of our design. Such generality implies that the

system can interconnect larger structures as well, inter-

connecting multi-computer testbeds as it interconnects

virtual machine monitors.

Each of our container implementations can parcel

its resources into concrete elements or inner containers

based on the descriptions mentioned in Section 2.1.

4.2 Communication

Our interconnection model is simple and powerful

enough to produce complex topologies, to reuse standard

connectivity tools at multiple levels, and to use as a base

for future enhancements. We provide patch-panels at

each container level that both interconnect and translate

cross-container communications. This standard place-

ment of a simple abstraction allows us to import a stan-

5



dard technology, Virtual Distributed Ethernet Switches

(VDE)[7]. These switches and topologies can be en-

hanced to provide network emulations such as induced

delay or loss models.

Our prototype implements communications both

within a container and across container boundaries. Both

are necessary to establish the complex connections that

large scale network apparatuses require. The cross-

container communication enables interaction across dif-

ferent representations with different fidelity.

We use an existing communication system to intercon-

nect elements within the container, and container code to

implement the cross container connections. Our proto-

type makes widespread use of VDE switches, because of

their clean interface and interoperablility. Many VMMs

that do not directly support VDE can be connected using

tap interfaces.

The container code configures VDE switches to act as

patch panels between concrete elements within a con-

tainer, as well as connecting them outside containers

through appropriate interfaces.

The container container provides the communication

scope between containers by housing the VDE switch

that connects the inner container’s tap interfaces. Our

recursive design made reusing VDE switches at multiple

levels straightforward.

4.3 Scaling Techniques

Though we generally prefer to take advantage of the on-

going research in making virtualization more scalable, as

a practical matter our prototype makes some optimiza-

tions to scale to an interesting size. We discuss our scal-

able file system deployment as one example of the sort

of optimization that containers support.

Configuring many virtual machines can scale badly,

especially when creating their file systems. Naively in-

stalling or replicating the same disk image for many in-

stances of the same virtual disk will be wasteful. How-

ever, each machine will make small changes to the file

system, so they cannot simply share an image. We used

a copy-on-write system to allow sharing the a file system

image between QEMU instances while preserving isola-

tion.

All concrete elements share a common view of sev-

eral file systems exported by the host testbed. Among

other things, the physical machines share /home which

is mounted via NFS. The file systems are exported to

QEMU virtual machines using 9P [15], the file system

from Plan 9. Processes share a file system with their

host, so they have access to the same files whether they

are embedded in physical machine or virtual machine.

We chose 9P because it is a network file system with-

out many of the pitfalls of NFS or the complexity of

AFS. The server is a cross-platform user-level daemon. It

allows re-exporting NFS-mounted directories which al-

lowed us to seamlessly make use of DETER nodes as

hosts for virtual machines.

5 Demonstration

To exercise our prototype and test our ideas we created

a large-scale apparatus based on the example we dis-

cussed in the introduction. We extracted a topology from

the rocketfuel Internet routing topology database[19] and

used that as an environment in which to release a DDoS

attack carried by a bit of self propagating code. The

code propagates according to a simple contagion model

and each infected machine begins launching a few well-

formed packets toward the designated victim. The code

continues infecting new machines as the DDoS grows.

The hypothetical researcher is studying the attack traffic

and its effectiveness at the defender, varying the worm

propagation or network topology.

We are able to scale this experiment by abstracting the

elements and matching them to containers in the system.

The Internet routing topology and infectable hosts are

all very simple and abstracted as processes. The worm

spread is modeled rather than executing exploit code on

running web servers because the researcher is not inter-

ested in that aspect of the scenario. The destination host

is a computer running a commercial operating system

and the researcher may install experimental tools there

to monitor the attack in detail. The DDoS command and

control systems, all simple IRC based controllers, are re-

alized as virtual machines.

Because the purpose of this demonstration was to test

containers, we focused on creating a case that required

multiple levels of abstraction and evaluating how well we

could create and manipulate that. We do not claim that

this is a novel or realistic propagation/DDoS scenario.

5.1 Building The Apparatus

We used custom tools to extract the routing topology

from the rocketfuel database and output a topdl descrip-

tion of that topology. We manually matched the elements

to their containers based on their abstraction level dis-

cussed above, and then manually grouped the process-

level concrete components into containers. Eventually

this step will be carried out by tools, designed along the

lines discussed in Section 2.3. From here our prototype

scripts configured the container containers that config-

ured the virtual machine containers; the virtual machine

containers configured the process containers to create the

apparatus.

The largest demonstration topology we created con-

sists of a total of 662 concrete elements created on 8

6



Figure 3: Embedding tree showing resources implementing

containers and concrete elements

physical computers. We realized them as 1 physical ma-

chine, 4 QEMU virtual machines, and 657 lightweight

processes. The lightweight processes are embedded

within 26 additional QEMU virtual machines (making

30 total), which are in turn embedded within 7 physical

machines. One physical computer is used directly as a

concrete element.

In order to test our communication and nesting system,

we embedded process containers inside virtual machine

containers when the problem description did not strictly

require that. Removing the extraneous VMs would yield

higher performance and scaling.

Because our hypothetical researcher is primarily inter-

ested in the accumulation of attack traffic at the defender,

the latency of multiple abstraction layers in the core is an

acceptable price to pay for the high utilization. For refer-

ence, the overhead of crossing the abstraction boundaries

made the longest path round trip time 25 ms for a 233 hop

path.

Figure 3 shows a partial embedding. Light rectangles

represent containers, lightly shaded ones represent re-

sources allocated to containers, and dark rectangles those

used as concrete elements. The labels consist of the type

of usage (container or node), then for containers the type

of container (computer, container, QEMU, process) and

the resource hosting the container. Nodes are followed

by their name.

The figure depicts the range of container nesting used

in the prototype. It shows the DETER testbed (a com-

puter container) that has allocated 3 computers, one di-

rectly as a concrete element and two as inner contain-

ers. One inner container, on node n2, contains a con-

tainer container and a process container with a concrete

element allocated in the process container. The other

container includes a container container that holds both

a QEMU virtual machine container and a process con-

tainer. The process container holds a process element.

The QEMU container holds two virtual machine ele-

ments and a process container that in turn holds a process

element.

Each process represents an infected network, and

represents multiple infected machines. We allowed

those processes to represent as many as 1000 machines,

meaning the entire apparatus models more than 50,000,

though obviously at very coarse levels of abstraction.

5.2 Using the Apparatus

Even considering only the 662 concrete elements in the

apparatus, Our ability to run standard experimentation

tools was key. Running an experiment by logging into

the elements or even scripting the action would be daunt-

ing with so many actors. SEER[18] was directly applica-

ble.

SEER enabled coordinated use of the nodes and a real

time visualization of the worm spread and the DDoS

attack. The container-generated apparatus supported

SEER operation with minimal changes, and the changes

we did need have been communicated to the tool main-

tainers.

The result of this demonstration was a plausible, very

large scale network apparatus that we could manipulate

with existing tools. Because it was laid out along lines

suggested by the abstractions of the problem, we were

able to build that apparatus with limited intervention. Be-

cause the prototype uses resources aggressively, we were

able to use very few physical resources to do so.

6 Conclusions

The container system addresses the need for large scale

network research by using researcher’s abstractions to

guide the construction of large scale network apparatus.

We have described the container abstraction that encap-

sulates a broad range of implementation techniques and

characterizes their abstraction levels and scalability pa-

rameters.

We have shown our detailed system design for a se-

lecting containers, organizing them into an abstract ap-

paratus and creating a real apparatus from them. That

real apparatus is conceptually compatible with experi-

ment management tools and configuration systems that

assist with carrying out large scale experiments.

Our prototype of the container model has demon-

strated that the ideas have concrete, practical instanti-

ations. We have been able to use standard tools like

QEMU, VDE switches, and the DETER testbed to im-

plement containers. The framework will easily admit

new technologies, and we are specifically targeting us-

ing more VMMs using the libvirt interface.

7



We have demonstrated a large scale apparatus con-

structed using the container model, with some manual

intervention. That system includes over 650 concrete el-

ements using only 8 physical computers, and is capable

of representing 50,000 computers at a coarse granularity

in a specific scenario.

The demonstration apparatus can be controlled using

conventional experiment management tools, though we

expect future more scalable tools to be more appropriate

for researchers.

Next steps include moving from the prototype to an

operational service in DETER, making more kinds of

containers available, and constructing a fully automated

embedder. The embedder will remove the manual steps

from apparatus creation.

Containers are a highly scalable, successfully proto-

typed, system for creating experimental apparatus being

operationalized in the DETER testbed.

References

[1] ALBRECHT, J., BRAUD, R., DAO, D., TOPILSKI, N., TUT-

TLE, C., SNOEREN, A. C., AND VAHDAT, A. Remote control:

Distributed application configuration, management, and visual-

ization with plush. In Twenty-first USENIX Large Installation

System Administration Conference, LISA ’07 (Nov. 2007).

[2] ANDERSON, L. P. T., CULLER, D., AND ROSCOE, T. A

blueprint for introducing disruptive technology into the internet.

In HotNets-I ’02 (Oct. 2002).

[3] BAVIER, A., FEAMSTERY, N., HUANG, M., PETERSON, L.,

AND REXFORD, J. In vini veritas: Realistic and controlled net-

work experimentation. In SIGCOMM ’06 (2006).

[4] BELLARD, F. QEMU, a fast and portable dynamic translator. In

Proceedings of the annual conference on USENIX Annual Techni-

cal Conference (Berkeley, CA, USA, 2005), ATEC ’05, USENIX

Association, pp. 41–46.

[5] BOLTE, M., SIEVERS, M., BIRKENHEUER, G., NIEHÖRSTER,

O., AND BRINKMANN, A. Non-intrusive virtualization manage-

ment using libvirt. In Proceedings of the Conference on Design,

Automation and Test in Europe (3001 Leuven, Belgium, Belgium,

2010), DATE ’10, European Design and Automation Association,

pp. 574–579.

[6] CAPPOS, J., BAKER, S., PLICHTA, J., NYUGEN, D., HARDIES,

J., BORGARD, M., JOHNSTON, J., AND HARTMAN, J. Stork:

Package management for distributed vm environments. In The

21st Large Installation System Administration Conference, LISA

’07 (Nov. 2007).

[7] DAVOLI, R. Vde: virtual distributed ethernet. In Testbeds and

Research Infrastructures for the Development of Networks and

Communities, 2005. Tridentcom 2005. First International Con-

ference on (feb. 2005), pp. 213 – 220.

[8] DETER FEDERATION TEAM. Topology description language,

Apr. 2011.

[9] FABER, T., AND WROCLAWSKI, J. A federated experiment en-

vironment for emulab-based testbeds. In Proceedings of Trident-

com (Washington, DC, 2009).

[10] GARDENGHI, L., GOLDWEBER, M., AND DAVOLI, R. View-

os: A new unifying approach against the global view assumption.

In ICCS (1) (2008), M. Bubak, G. D. van Albada, J. Dongarra,

and P. M. A. Sloot, Eds., vol. 5101 of Lecture Notes in Computer

Science, Springer, pp. 287–296.

[11] GURUPRASAD, S., RICCI, R., AND LEPREAU, J. Integrated

network experimentation using simulation and emulation. In

Testbeds and Research Infrastructures for the Development of

Networks and Communities, 2005. Tridentcom 2005. First Inter-

national Conference on (feb. 2005), pp. 204 – 212.

[12] HIBLER, M., RICCI, R., STOLLER, L., DUERIG, J., GU-

RUPRASAD, S., STACK, T., WEBB, K., , AND LEPREAU, J.

Large-scale virtualization in the emulab network testbed. In In

Proceedings of the 2008 USENIX Annual Technical Conference

(Boston, MA, June 2008), pp. 113–128.

[13] HIBLER, M., RICCI, R., STOLLER, L., DUERIG, J., GU-

RUPRASAD, S., STACK, T., WEBB, K., AND LEPREAU, J.

Feedback-directed virtualization techniques for scalable network

experimentation. In Flux Technical Note FTN200402 (May

2004), University of Utah.

[14] MIRKOVIC, J., BENZEL, T. V., FABER, T., BRADEN, R., WRO-

CLAWSKI, J. T., AND SCHWAB, S. The deter project: Advancing

the science of cyber security experimentation and test. In Tech-

nologies for Homeland Security (HST), 2010 IEEE International

Conference on (nov. 2010), pp. 1 –7.

[15] PIKE, R., PRESOTTO, D., THOMPSON, K., AND TRICKEY, H.

Plan 9 from bell labs. In In Proceedings of the Summer 1990

UKUUG Conference (1990), pp. 1–9.

[16] RICCI, R., DUERIG, J., SANAGA, P., GEBHARDT, D., HIBLER,

M., ATKINSON, K., ZHANG, J., KASERA, S., AND LEPREAU,

J. The flexlab approach to realistic evaluation of networked

systems. In In Proceedings of the Fourth USENIX Symposium

on Networked Systems Design and Implementation (NSDI 2007)

(Cambridge, MA, Apr. 2007), pp. 201–214.

[17] SANAGA, P., DUERIG, J., RICCI, R., AND LEPREAU, J. Mod-

eling and emulation of internet paths. In In Proceedings of the

Sixth USENIX Symposium on Networked Systems Design and Im-

plementation (NSDI) (Boston, MA, Apr. 2009), pp. 199–212.

[18] SCHWAB, S., WILSON, B., KO, C., AND HUSSAIN, A. SEER:

a security experimentation environment for deter. In Proceedings

of the DETER Community Workshop on Cyber Security Experi-

mentation and Test on DETER Community Workshop on Cyber

Security Experimentation and Test 2007 (Berkeley, CA, USA,

2007), USENIX Association, pp. 2–2.

[19] SPRING, N., MAHAJAN, R., AND WETHERALL, D. Measuring

isp topologies with rocketfuel. In Proceedings of the 2002 confer-

ence on Applications, technologies, architectures, and protocols

for computer communications (New York, NY, USA, 2002), SIG-

COMM ’02, ACM, pp. 133–145.

[20] VAHDAT, A., YOCUM, K., WALSH, K., MAHADEVAN, P.,

KOSTIĆ, D., CHASE, J., AND BECKER, D. Scalability and ac-

curacy in a large-scale network emulator. SIGOPS Oper. Syst.

Rev. 36 (December 2002), 271–284.

[21] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GU-

RUPRASAD, S., NEWBOLD, M., HIBLER, M., BARB, C., AND

JOGLEKAR, A. An integrated experimental environment for dis-

tributed systems and networks. In Proc. of the Fifth Symposium

on Operating Systems Design and Implementation (Boston, MA,

Dec. 2002), USENIX Association, pp. 255–270.

8


	tech rprt cvr_deter_isi-tr-683
	dtr_net exp using containers_2011-part 2



